Banach Journal of Mathematical Analysis

Generalizations of Ostrowski inequality via biparametric Euler harmonic identities for measures

Ambroz Civljak and Ljuban Dedic

Full-text: Open access

Abstract

Some generalizations of Ostrowski inequality are given by using biparametric Euler identities involving real Borel measures and harmonic sequences of functions.

Article information

Source
Banach J. Math. Anal., Volume 4, Number 1 (2010), 170-184.

Dates
First available in Project Euclid: 27 April 2010

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1272374679

Digital Object Identifier
doi:10.15352/bjma/1272374679

Mathematical Reviews number (MathSciNet)
MR2628814

Zentralblatt MATH identifier
1194.26025

Subjects
Primary: 26D15: Inequalities for sums, series and integrals
Secondary: 28A25: Integration with respect to measures and other set functions 26D20: Other analytical inequalities 26D99: None of the above, but in this section

Keywords
Ostrowski inequality harmonic sequences biparametric Euler identities

Citation

Civljak, Ambroz; Dedic, Ljuban. Generalizations of Ostrowski inequality via biparametric Euler harmonic identities for measures. Banach J. Math. Anal. 4 (2010), no. 1, 170--184. doi:10.15352/bjma/1272374679. https://projecteuclid.org/euclid.bjma/1272374679


Export citation

References

  • A. Čivljak, Lj. Dedić and M. Matić, Euler harmonic identities for measures, Nonlinear Funct. Anal. Appl. 12 (2007), no. 3, 343–361.
  • Lj. Dedić, M. Matić and J. Pečarić, On generalizations of Ostrowski inequality via some Euler-type identities, Math. Inequal. Appl. 3 (2000), no. 3, 337–353.
  • Lj. Dedić, M. Matić, J. Pečarić and A. Agli ć Aljinović, On weighted Euler harmonic identities with applications, Math. Inequal. Appl. 8 (2005), no. 2, 237–257.
  • Lj. Dedić, M. Matić, J. Pečarić and A. Vukelić, On generalizations of Ostrowski inequality via Euler harmonic identities, J. Inequal. Appl., 7 (2002), no. 6, 787–805.
  • A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.