• Bernoulli
  • Volume 25, Number 3 (2019), 1901-1938.

Sparse covariance matrix estimation in high-dimensional deconvolution

Denis Belomestny, Mathias Trabs, and Alexandre B. Tsybakov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the estimation of the covariance matrix $\Sigma$ of a $p$-dimensional normal random vector based on $n$ independent observations corrupted by additive noise. Only a general nonparametric assumption is imposed on the distribution of the noise without any sparsity constraint on its covariance matrix. In this high-dimensional semiparametric deconvolution problem, we propose spectral thresholding estimators that are adaptive to the sparsity of $\Sigma$. We establish an oracle inequality for these estimators under model miss-specification and derive non-asymptotic minimax convergence rates that are shown to be logarithmic in $n/\log p$. We also discuss the estimation of low-rank matrices based on indirect observations as well as the generalization to elliptical distributions. The finite sample performance of the threshold estimators is illustrated in a numerical example.

Article information

Bernoulli, Volume 25, Number 3 (2019), 1901-1938.

Received: October 2017
Revised: March 2018
First available in Project Euclid: 12 June 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Fourier methods minimax convergence rates severely ill-posed inverse problem thresholding


Belomestny, Denis; Trabs, Mathias; Tsybakov, Alexandre B. Sparse covariance matrix estimation in high-dimensional deconvolution. Bernoulli 25 (2019), no. 3, 1901--1938. doi:10.3150/18-BEJ1040A.

Export citation


  • [1] Belomestny, D. and Reiß, M. (2006). Spectral calibration of exponential Lévy models. Finance Stoch. 10 449–474.
  • [2] Belomestny, D. and Trabs, M. (2017). Low-rank diffusion matrix estimation for high-dimensional time-changed Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at arXiv:1510.04638.
  • [3] Belomestny, D., Trabs, M. and Tsybakov, A.B. (2019). Supplement to “Sparse covariance matrix estimation in high-dimensional deconvolution”: A bound for weighted $L^{2}$-distances of certain densities. DOI:10.3150/18-BEJ1040ASUPP.
  • [4] Bickel, P.J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604.
  • [5] Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199–227.
  • [6] Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli 11 309–340.
  • [7] Butucea, C., Matias, C. and Pouet, C. (2008). Adaptivity in convolution models with partially known noise distribution. Electron. J. Stat. 2 897–915.
  • [8] Butucea, C. and Tsybakov, A.B. (2008). Sharp optimality in density deconvolution with dominating bias. I. Theory Probab. Appl. 52 24–39.
  • [9] Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Amer. Statist. Assoc. 106 672–684.
  • [10] Cai, T.T., Ren, Z. and Zhou, H.H. (2016). Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation. Electron. J. Stat. 10 1–59.
  • [11] Cai, T.T. and Zhang, A. (2016). Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data. J. Multivariate Anal. 150 55–74.
  • [12] Cai, T.T., Zhang, C.-H. and Zhou, H.H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118–2144.
  • [13] Cai, T.T. and Zhou, H.H. (2012). Minimax estimation of large covariance matrices under $\ell_{1}$-norm. Statist. Sinica 22 1319–1349.
  • [14] Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184–1186.
  • [15] Comte, F. and Lacour, C. (2011). Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 601–627.
  • [16] Cressie, N. and Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.
  • [17] Dattner, I., Reiß, M. and Trabs, M. (2016). Adaptive quantile estimation in deconvolution with unknown error distribution. Bernoulli 22 143–192.
  • [18] Delaigle, A. and Hall, P. (2016). Methodology for non-parametric deconvolution when the error distribution is unknown. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 231–252.
  • [19] Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. Ann. Statist. 36 665–685.
  • [20] Delaigle, A. and Meister, A. (2011). Nonparametric function estimation under Fourier-oscillating noise. Statist. Sinica 21 1065–1092.
  • [21] Eckle, K., Bissantz, N. and Dette, H. (2017). Multiscale inference for multivariate deconvolution. Electron. J. Stat. 11 4179–4219.
  • [22] El Karoui, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717–2756.
  • [23] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272.
  • [24] Fan, J., Li, Y. and Yu, K. (2012). Vast volatility matrix estimation using high-frequency data for portfolio selection. J. Amer. Statist. Assoc. 107 412–428.
  • [25] Fan, J., Liao, Y. and Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. Econom. J. 19 C1–C32.
  • [26] Fan, J., Liao, Y. and Mincheva, M. (2011). High-dimensional covariance matrix estimation in approximate factor models. Ann. Statist. 39 3320–3356.
  • [27] Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 603–680. With 33 discussions by 57 authors and a reply by Fan, Liao and Mincheva.
  • [28] Fang, K.T., Kotz, S. and Ng, K.W. (1990). Symmetric Multivariate and Related Distributions. Monographs on Statistics and Applied Probability 36. London: Chapman & Hall.
  • [29] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432–441.
  • [30] Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics. New York: Cambridge Univ. Press.
  • [31] Jacod, J. and Reiss, M. (2014). A remark on the rates of convergence for integrated volatility estimation in the presence of jumps. Ann. Statist. 42 1131–1144.
  • [32] Johannes, J. (2009). Deconvolution with unknown error distribution. Ann. Statist. 37 2301–2323.
  • [33] Kappus, J. and Mabon, G. (2014). Adaptive density estimation in deconvolution problems with unknown error distribution. Electron. J. Stat. 8 2879–2904.
  • [34] Koltchinskii, V., Lounici, K. and Tsybakov, A.B. (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302–2329.
  • [35] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254–4278.
  • [36] Lepski, O. and Willer, T. (2017). Estimation in the convolution structure density model. Part I: Oracle inequalities. Preprint. Available at arXiv:1704.04418.
  • [37] Lepski, O. and Willer, T. (2017). Estimation in the convolution structure density model. Part II: Adaptation over the scale of anisotropic classes. Preprint. Available at arXiv:1704.04420.
  • [38] Lounici, K. (2014). High-dimensional covariance matrix estimation with missing observations. Bernoulli 20 1029–1058.
  • [39] Low, M.G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547–2554.
  • [40] Masry, E. (1993). Strong consistency and rates for deconvolution of multivariate densities of stationary processes. Stochastic Process. Appl. 47 53–74.
  • [41] Matias, C. (2002). Semiparametric deconvolution with unknown noise variance. ESAIM Probab. Stat. 6 271–292.
  • [42] Meister, A. (2008). Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions. Inverse Probl. 24 015003, 14.
  • [43] Neumann, M.H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7 307–330.
  • [44] Rigollet, P. and Tsybakov, A. (2011). Exponential screening and optimal rates of sparse estimation. Ann. Statist. 39 731–771.
  • [45] Rigollet, P. and Tsybakov, A.B. (2012). Comment: “Minimax estimation of large covariance matrices under $\ell_{1}$-norm” [MR3027084]. Statist. Sinica 22 1358–1367.
  • [46] Rothman, A.J. (2012). Positive definite estimators of large covariance matrices. Biometrika 99 733–740.
  • [47] Rothman, A.J., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices. J. Amer. Statist. Assoc. 104 177–186.
  • [48] Sanandaji, B.M., Tascikaraoglu, A., Poolla, K. and Varaiya, P. (2015). Low-dimensional models in spatio-temporal wind speed forecasting. In American Control Conference (ACC) 4485–4490. IEEE.
  • [49] Sato, K. (2013). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge: Cambridge Univ. Press. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation.
  • [50] Tao, M., Wang, Y. and Zhou, H.H. (2013). Optimal sparse volatility matrix estimation for high-dimensional Itô processes with measurement errors. Ann. Statist. 41 1816–1864.
  • [51] Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. New York: Springer. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.
  • [52] Tsybakov, A.B. (2013). Aggregation and high-dimensional statistics. Saint Flour lecture notes.

Supplemental materials

  • Supplement: A bound for weighted $L^{2}$-distances of certain densities. We prove Proposition 16 which is needed to show the lower bound for the covariance estimation in the deconvolution model. More precisely, a bound for the $L^{2}$-distance of the certain densities with polynomial weights is proved.