## Bernoulli

• Bernoulli
• Volume 24, Number 1 (2018), 80-114.

### The logarithmic law of sample covariance matrices near singularity

#### Abstract

Let $B=(b_{jk})_{p\times n}=(Y_{1},Y_{2},\ldots,Y_{n})$ be a collection of independent real random variables with mean zero and variance one. Suppose that $\Sigma$ is a $p$ by $p$ population covariance matrix. Let $X_{k}=\Sigma^{1/2}Y_{k}$ for $k=1,2,\ldots,n$ and $\hat{\Sigma}_{1}=\frac{1}{n}\sum_{k=1}^{n}X_{k}X_{k}^{T}$. Under the moment condition $\mathop{\mathrm{sup}}_{p,n}\max_{1\leq j\leq p,1\leq k\leq n}\mathbb{E}b_{jk}^{4}<\infty$, we prove that the log determinant of the sample covariance matrix $\hat{\Sigma}_{1}$ satisfies

$\frac{\log\operatorname{det}\hat{\Sigma}_{1}-\sum_{k=1}^{p}\log(1-\frac{k}{n})-\log\det\Sigma}{\sqrt{-2\log(1-\frac{p}{n})}}\xrightarrow[\qquad]{d}N(0,1),$ when $p/n\rightarrow1$ and $p<n$. For $p=n$, we prove that

$\frac{\log\det\hat{\Sigma}_{1}+n\log n-\log(n-1)!-\log\det\Sigma}{\sqrt{2\log n}}\xrightarrow[\qquad]{d}N(0,1).$

#### Article information

Source
Bernoulli, Volume 24, Number 1 (2018), 80-114.

Dates
Revised: February 2016
First available in Project Euclid: 27 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.bj/1501142437

Digital Object Identifier
doi:10.3150/16-BEJ867

Mathematical Reviews number (MathSciNet)
MR3706751

Zentralblatt MATH identifier
06778322

#### Citation

Wang, Xuejun; Han, Xiao; Pan, Guangming. The logarithmic law of sample covariance matrices near singularity. Bernoulli 24 (2018), no. 1, 80--114. doi:10.3150/16-BEJ867. https://projecteuclid.org/euclid.bj/1501142437

#### References

• [1] Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed. Hoboken, NJ: Wiley.
• [2] Bai, Z.D. and Silverstein, J.W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 553–605.
• [3] Bai, Z. and Silverstein, J.W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. New York: Springer.
• [4] Bao, Z., Pan, G. and Zhou, W. (2015). The logarithmic law of random determinant. Bernoulli 21 1600–1628.
• [5] Cai, T.T., Liang, T. and Zhou, H.H. (2015). Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J. Multivariate Anal. 137 161–172.
• [6] Costello, K.P. and Vu, V. (2009). Concentration of random determinants and permanent estimators. SIAM J. Discrete Math. 23 1356–1371.
• [7] Gīrko, V.L. (1980). The central limit theorem for random determinants. Theory Probab. Appl. 24 729–740.
• [8] Girko, V.L. (1990). Theory of Random Determinants. Dordrecht: Kluwer Academic.
• [9] Girko, V.L. (1997). A refinement of the central limit theorem for random determinants. Theory Probab. Appl. 42 121–129.
• [10] Goodman, N.R. (1963). The distribution of the determinant of a complex Wishart distributed matrix. Ann. Math. Stat. 34 178–180.
• [11] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application. New York: Academic Press.
• [12] Komlós, J. (1968). On the determinant of random matrices. Studia Sci. Math. Hungar. 3 387–399.
• [13] Nguyen, H.H. and Vu, V. (2014). Random matrices: Law of the determinant. Ann. Probab. 42 146–167.
• [14] Nielsen, J. (1999). The distribution of volume reductions induced by isotropic random projections. Adv. in Appl. Probab. 31 985–994.
• [15] Rempała, G. and Wesołowski, J. (2005). Asymptotics for products of independent sums with an application to Wishart determinants. Statist. Probab. Lett. 74 129–138.
• [16] Rouault, A. (2007). Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles. ALEA Lat. Am. J. Probab. Math. Stat. 3 181–230.
• [17] Tao, T. and Vu, V. (2006). On random $\pm1$ matrices: Singularity and determinant. Random Structures Algorithms 28 1–23.
• [18] Tao, T. and Vu, V. (2008). Random matrices: The circular law. Commun. Contemp. Math. 10 261–307.
• [19] Tao, T. and Vu, V. (2012). A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231 74–101.