## Bernoulli

- Bernoulli
- Volume 23, Number 2 (2017), 1299-1334.

### Parametric estimation of pairwise Gibbs point processes with infinite range interaction

Jean-François Coeurjolly and Frédéric Lavancier

#### Abstract

This paper is concerned with statistical inference for infinite range interaction Gibbs point processes, and in particular for the large class of Ruelle superstable and lower regular pairwise interaction models. We extend classical statistical methodologies such as the pseudo-likelihood and the logistic regression methods, originally defined and studied for finite range models. Then we prove that the associated estimators are strongly consistent and satisfy a central limit theorem, provided the pairwise interaction function tends sufficiently fast to zero. To this end, we introduce a new central limit theorem for almost conditionally centered triangular arrays of random fields.

#### Article information

**Source**

Bernoulli, Volume 23, Number 2 (2017), 1299-1334.

**Dates**

Received: July 2015

Revised: October 2015

First available in Project Euclid: 4 February 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.bj/1486177400

**Digital Object Identifier**

doi:10.3150/15-BEJ779

**Mathematical Reviews number (MathSciNet)**

MR3606767

**Zentralblatt MATH identifier**

06701627

**Keywords**

central limit theorem Lennard–Jones potential pseudo-likelihood

#### Citation

Coeurjolly, Jean-François; Lavancier, Frédéric. Parametric estimation of pairwise Gibbs point processes with infinite range interaction. Bernoulli 23 (2017), no. 2, 1299--1334. doi:10.3150/15-BEJ779. https://projecteuclid.org/euclid.bj/1486177400