Bernoulli

Wald tests of singular hypotheses

Mathias Drton and Han Xiao

Full-text: Open access

Abstract

Motivated by the problem of testing tetrad constraints in factor analysis, we study the large-sample distribution of Wald statistics at parameter points at which the gradient of the tested constraint vanishes. When based on an asymptotically normal estimator, the Wald statistic converges to a rational function of a normal random vector. The rational function is determined by a homogeneous polynomial and a covariance matrix. For quadratic forms and bivariate monomials of arbitrary degree, we show unexpected relationships to chi-square distributions that explain conservative behavior of certain Wald tests. For general monomials, we offer a conjecture according to which the reciprocal of a certain quadratic form in the reciprocals of dependent normal random variables is chi-square distributed.

Article information

Source
Bernoulli, Volume 22, Number 1 (2016), 38-59.

Dates
Received: June 2013
Revised: February 2014
First available in Project Euclid: 30 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.bj/1443620843

Digital Object Identifier
doi:10.3150/14-BEJ620

Mathematical Reviews number (MathSciNet)
MR3449776

Zentralblatt MATH identifier
06543263

Keywords
asymptotic distribution factor analysis large-sample theory singular parameter point tetrad Wald statistic

Citation

Drton, Mathias; Xiao, Han. Wald tests of singular hypotheses. Bernoulli 22 (2016), no. 1, 38--59. doi:10.3150/14-BEJ620. https://projecteuclid.org/euclid.bj/1443620843


Export citation

References

  • [1] Azaïs, J.-M., Gassiat, É. and Mercadier, C. (2006). Asymptotic distribution and local power of the log-likelihood ratio test for mixtures: Bounded and unbounded cases. Bernoulli 12 775–799.
  • [2] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
  • [3] Bollen, K.A., Lennox, R.D. and Dahly, D.L. (2009). Practical application of the vanishing tetrad test for causal indicator measurement models: An example from health-related quality of life. Stat. Med. 28 1524–1536.
  • [4] Bollen, K.A. and Ting, K.-F. (2000). A tetrad test for causal indicators. Psychological Methods 5 3–22.
  • [5] Chernoff, H. (1954). On the distribution of the likelihood ratio. Ann. Math. Statistics 25 573–578.
  • [6] Cohen, E.A. Jr. (1981). A note on normal functions of normal random variables. Comput. Math. Appl. 7 395–400.
  • [7] DasGupta, A. and Shepp, L. (2004). Chebyshev polynomials and $G$-distributed functions of $F$-distributed variables. In A Festschrift for Herman Rubin. Institute of Mathematical Statistics Lecture Notes—Monograph Series 45 153–163. Beachwood, OH: IMS.
  • [8] Drton, M. (2009). Likelihood ratio tests and singularities. Ann. Statist. 37 979–1012.
  • [9] Drton, M., Massam, H. and Olkin, I. (2008). Moments of minors of Wishart matrices. Ann. Statist. 36 2261–2283.
  • [10] Drton, M., Sturmfels, B. and Sullivant, S. (2007). Algebraic factor analysis: Tetrads, pentads and beyond. Probab. Theory Related Fields 138 463–493.
  • [11] Drton, M., Sturmfels, B. and Sullivant, S. (2009). Lectures on Algebraic Statistics. Oberwolfach Seminars 39. Basel: Birkhäuser.
  • [12] Drton, M. and Williams, B. (2011). Quantifying the failure of bootstrap likelihood ratio tests. Biometrika 98 919–934.
  • [13] Dufour, J.M., Renault, E. and Zinde-Walsh, V. (2013). Wald tests when restrictions are locally singular. Available at arXiv:1312.0569.
  • [14] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. New York: Wiley.
  • [15] Gaffke, N., Heiligers, B. and Offinger, R. (2002). On the asymptotic null-distribution of the Wald statistic at singular parameter points. Statist. Decisions 20 379–398.
  • [16] Gaffke, N., Steyer, R. and von Davier, A.A. (1999). On the asymptotic null-distribution of the Wald statistic at singular parameter points. Statist. Decisions 17 339–358.
  • [17] Galbraith, J.W. and Zinde-Walsh, V. (1997). On some simple, autoregression-based estimation and identification techniques for ARMA models. Biometrika 84 685–696.
  • [18] Glonek, G.F.V. (1993). On the behaviour of Wald statistics for the disjunction of two regular hypotheses. J. Roy. Statist. Soc. Ser. B 55 749–755.
  • [19] Harman, H.H. (1976). Modern Factor Analysis, revised ed. Chicago, IL: Univ. Chicago Press.
  • [20] Hipp, J.R. and Bollen, K.A. (2003). Model fit in structural equation models with censored, ordinal, and dichotomous variables: Testing vanishing tetrads. Sociological Methodology 33 267–305.
  • [21] Iwashita, T. and Siotani, M. (1994). Asymptotic distributions of functions of a sample covariance matrix under the elliptical distribution. Canad. J. Statist. 22 273–283.
  • [22] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions. Vol. 1, 2nd ed. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: Wiley.
  • [23] Johnson, T.R. and Bodner, T.E. (2007). A note on the use of bootstrap tetrad tests for covariance structures. Struct. Equ. Model. 14 113–124.
  • [24] Kato, N. and Kuriki, S. (2013). Likelihood ratio tests for positivity in polynomial regressions. J. Multivariate Anal. 115 334–346.
  • [25] Marsaglia, G. (1965). Ratios of normal variables and ratios of sums of uniform variables. J. Amer. Statist. Assoc. 60 193–204.
  • [26] Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
  • [27] Quine, M.P. (1994). A result of Shepp. Appl. Math. Lett. 7 33–34.
  • [28] Reid, J.G. (1987). Normal functions of normal random variables. Comput. Math. Appl. 14 157–160.
  • [29] Ritz, C. and Skovgaard, I.M. (2005). Likelihood ratio tests in curved exponential families with nuisance parameters present only under the alternative. Biometrika 92 507–517.
  • [30] Seshadri, V. (1993). The Inverse Gaussian Distribution. Oxford Science Publications. A Case Study in Exponential Families. New York: Clarendon Press.
  • [31] Shepp, L. (1964). Normal functions of normal random variables. SIAM Rev. 6 459–460.
  • [32] Silva, R., Scheines, R., Glymour, C. and Spirtes, P. (2006). Learning the structure of linear latent variable models. J. Mach. Learn. Res. 7 191–246.
  • [33] Spearman, C. (1904). ‘General intelligence,’ objectively determined and measured. The American Journal of Psychology 15 201–292.
  • [34] Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction, and Search, 2nd ed. Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press. With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson, A Bradford Book.
  • [35] Sullivant, S., Talaska, K. and Draisma, J. (2010). Trek separation for Gaussian graphical models. Ann. Statist. 38 1665–1685.
  • [36] Zwiernik, P. and Smith, J.Q. (2012). Tree cumulants and the geometry of binary tree models. Bernoulli 18 290–321.