• Bernoulli
  • Volume 21, Number 3 (2015), 1911-1945.

Asymptotic total variation tests for copulas

Jean-David Fermanian, Dragan Radulović, and Marten Wegkamp

Full-text: Open access


We propose a new platform of goodness-of-fit tests for copulas, based on empirical copula processes and nonparametric bootstrap counterparts. The standard Kolmogorov–Smirnov type test for copulas that takes the supremum of the empirical copula process indexed by orthants is extended by test statistics based on the empirical copula process indexed by families of $L_{n}$ disjoint boxes, with $L_{n}$ slowly tending to infinity. Although the underlying empirical process does not converge, the critical values of our new test statistics can be consistently estimated by nonparametric bootstrap techniques, under simple or composite null assumptions. We implemented a particular example of these tests and our simulations confirm that the power of the new procedure is oftentimes higher than the power of the standard Kolmogorov–Smirnov or the Cramér–von Mises tests for copulas.

Article information

Bernoulli, Volume 21, Number 3 (2015), 1911-1945.

Received: November 2012
Revised: April 2014
First available in Project Euclid: 27 May 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

bootstrap copula empirical copula process goodness-of-fit test weak convergence


Fermanian, Jean-David; Radulović, Dragan; Wegkamp, Marten. Asymptotic total variation tests for copulas. Bernoulli 21 (2015), no. 3, 1911--1945. doi:10.3150/14-BEJ632.

Export citation


  • [1] Appel, M.J., LaBarre, R. and Radulović, D. (2003). On accelerated random search. SIAM J. Optim. 14 708–731 (electronic).
  • [2] Berg, D. (2009). Copula goodness-of-fit testing: An overview and power comparison. Eur. J. Finance 15 675–701.
  • [3] Bickel, P.J. and Freedman, D.A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217.
  • [4] Bickel, P.J. and Freedman, D.A. (1983). Bootstrapping regression models with many parameters. In A Festschrift for Erich L. Lehmann (P.J. Bickel, K. Doksum and J.L. Hodges, eds.). Wadsworth Statist./Probab. Ser. 28–48. Belmont, CA: Wadsworth.
  • [5] Bücher, A. and Dette, H. (2010). A note on bootstrap approximations for the empirical copula process. Statist. Probab. Lett. 80 1925–1932.
  • [6] Csörgó, S. and Mason, D.M. (1989). Bootstrapping empirical functions. Ann. Statist. 17 1447–1471.
  • [7] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 274–292.
  • [8] Dobrić, J. and Schmid, F. (2005). Testing goodness of fit for parametric families of copulas – Application to financial data. Comm. Statist. Simulation Comput. 34 1053–1068.
  • [9] Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. J. Multivariate Anal. 95 119–152.
  • [10] Fermanian, J.-D. (2012). An overview of the goodness-of-fit test problem for copulas. In Copulae in Mathematical and Quantitative Finance (P. Jaworski, F. Durant and W. Härdle, eds.) 68–89. Berlin: Springer.
  • [11] Fermanian, J.-D., Radulović, D. and Wegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli 10 847–860.
  • [12] Fermanian, J.-D. and Wegkamp, M.H. (2012). Time-dependent copulas. J. Multivariate Anal. 110 19–29.
  • [13] Genest, C., Ghoudi, K. and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 543–552.
  • [14] Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann. Inst. Henri Poincaré Probab. Stat. 44 1096–1127.
  • [15] Genest, C., Rémillard, B. and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance Math. Econom. 44 199–213.
  • [16] Hildebrandt, T.H. (1963). Introduction to the Theory of Integration. Pure and Applied Mathematics XIII. New York: Academic Press.
  • [17] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 293–325.
  • [18] Hvattum, L.M. and Glover, F. (2009). Finding local optima of high-dimensional functions using direct search methods. European J. Oper. Res. 195 31–45.
  • [19] Liebscher, E. (2008). Construction of asymmetric multivariate copulas. J. Multivariate Anal. 99 2234–2250.
  • [20] Mason, D.M. (1981). Bounds for weighted empirical distribution functions. Ann. Probab. 9 881–884.
  • [21] Nelsen, R.B. (2006). An Introduction to Copulas, 2nd ed. New York: Springer.
  • [22] Radulović, D. (1998). Can we bootstrap even if CLT fails? J. Theoret. Probab. 11 813–830.
  • [23] Radulović, D. (2012). A direct bootstrapping technique and its application to a novel goodness of fit test. J. Multivariate Anal. 107 181–199.
  • [24] Radulović, D. (2013). High dimensional CLT and its applications. In High Dimensional Probability VI. Progress in Probability 66 357–373. Basel: Springer.
  • [25] Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. J. Multivariate Anal. 100 377–386.
  • [26] Scaillet, O. (2007). Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters. J. Multivariate Anal. 98 533–543.
  • [27] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 764–782.
  • [28] Shih, J.H. and Louis, T.A. (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51 1384–1399.
  • [29] Shorack, G.R. and Wellner, J.A. (2009). Empirical Processes with Applications to Statistics, 2nd ed. Philadelphia, PA: SIAM.
  • [30] Sklar, M. (1959). Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229–231.
  • [31] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.
  • [32] van der Vaart, A.W. and Wellner, J. (2000). Weak Convergence and Empirical Processes. Springer Series in Statistics. New York: Springer.