• Bernoulli
  • Volume 20, Number 3 (2014), 1344-1371.

On the empirical multilinear copula process for count data

Christian Genest, Johanna G. Nešlehová, and Bruno Rémillard

Full-text: Open access


Continuation refers to the operation by which the cumulative distribution function of a discontinuous random vector is made continuous through multilinear interpolation. The copula that results from the application of this technique to the classical empirical copula is either called the multilinear or the checkerboard copula. As shown by Genest and Nešlehová (Astin Bull. 37 (2007) 475–515) and Nešlehová (J. Multivariate Anal. 98 (2007) 544–567), this copula plays a central role in characterizing dependence concepts in discrete random vectors. In this paper, the authors establish the asymptotic behavior of the empirical process associated with the multilinear copula based on $d$-variate count data. This empirical process does not generally converge in law on the space $\mathcal{C}([0,1]^{d})$ of continuous functions on $[0,1]^{d}$, equipped with the uniform norm. However, the authors show that the process converges in $\mathcal{C}(K)$ for any compact $K\subset\mathcal{O}$, where $\mathcal{O}$ is a dense open subset of $[0,1]^{d}$, whose complement is the Cartesian product of the ranges of the marginal distribution functions. This result is sufficient to deduce the weak limit of many functionals of the process, including classical statistics for monotone trend. It also leads to a powerful and consistent test of independence which is applicable even to sparse contingency tables whose dimension is sample size dependent.

Article information

Bernoulli, Volume 20, Number 3 (2014), 1344-1371.

First available in Project Euclid: 11 June 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

checkerboard copula contingency table count data empirical process Kendall’s tau mid-ranks multilinear extension copula Spearman’s rho test of independence


Genest, Christian; Nešlehová, Johanna G.; Rémillard, Bruno. On the empirical multilinear copula process for count data. Bernoulli 20 (2014), no. 3, 1344--1371. doi:10.3150/13-BEJ524.

Export citation


  • [1] Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley-Interscience.
  • [2] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer Series in Statistics. New York: Springer.
  • [3] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 274–292.
  • [4] Deheuvels, P. (1979). Non parametric tests of independence. In Statistique non paramétrique asymptotique (J.-P. Raoult, ed.) 95–107. Berlin: Springer.
  • [5] Dudley, R.M. (2002). Real Analysis and Probability, 2nd ed. Cambridge Studies in Advanced Mathematics 74. Cambridge: Cambridge Univ. Press.
  • [6] Fermanian, J.-D., Radulović, D. and Wegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli 10 847–860.
  • [7] Genest, C. and Nešlehová, J. (2007). A primer on copulas for count data. Astin Bull. 37 475–515.
  • [8] Genest, C., Nešlehová, J. and Ruppert, M. (2011). Discussion: Statistical models and methods for dependence in insurance data. J. Korean Statist. Soc. 40 141–148.
  • [9] Genest, C., Nešlehová, J.G. and Rémillard, B. (2013). On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data. J. Multivariate Anal. 117 214–228.
  • [10] Genest, C. and Rémillard, B. (2004). Tests of independence and randomness based on the empirical copula process. TEST 13 335–370.
  • [11] Lee, A.J. (1990). $U$-Statistics: Theory and Practice. Statistics: Textbooks and Monographs 110. New York: Dekker Inc.
  • [12] Murphy, O.A. (2013). Copula-based tests of independence for bivariate discrete data. Master’s thesis, McGill Univ.
  • [13] Nelsen, R.B. (2006). An Introduction to Copulas, 2nd ed. Springer Series in Statistics. New York: Springer.
  • [14] Nešlehová, J. (2007). On rank correlation measures for non-continuous random variables. J. Multivariate Anal. 98 544–567.
  • [15] Quessy, J.-F. (2009). Tests of multivariate independence for ordinal data. Comm. Statist. Theory Methods 38 3510–3531.
  • [16] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4 912–923.
  • [17] Schmid, F. and Schmidt, R. (2007). Multivariate extensions of Spearman’s rho and related statistics. Statist. Probab. Lett. 77 407–416.
  • [18] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 764–782.
  • [19] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. New York: Springer.