Bernoulli

  • Bernoulli
  • Volume 19, Number 4 (2013), 1404-1418.

Aspects of likelihood inference

Nancy Reid

Full-text: Open access

Abstract

I review the classical theory of likelihood based inference and consider how it is being extended and developed for use in complex models and sampling schemes.

Article information

Source
Bernoulli, Volume 19, Number 4 (2013), 1404-1418.

Dates
First available in Project Euclid: 27 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.bj/1377612858

Digital Object Identifier
doi:10.3150/12-BEJSP03

Mathematical Reviews number (MathSciNet)
MR3102557

Zentralblatt MATH identifier
1273.62053

Keywords
approximate pivotal quantities composite likelihood Laplace approximation nuisance parameter parametric inference $r^{*}$ approximation

Citation

Reid, Nancy. Aspects of likelihood inference. Bernoulli 19 (2013), no. 4, 1404--1418. doi:10.3150/12-BEJSP03. https://projecteuclid.org/euclid.bj/1377612858


Export citation

References

  • Apanasovich, T.V., Ruppert, D., Lupton, J.R., Popovic, N., Turner, N.D., Chapkin, R.S. and Carroll, R.J. (2008). Aberrant crypt foci and semiparametric modeling of correlated binary data. Biometrics 64 490–500, 667.
  • Barndorff-Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics. Monographs on Statistics and Applied Probability 52. London: Chapman & Hall.
  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 192–236. With discussion by D.R. Cox, A.G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J.M. Hammersley, and M.S. Bartlett and with a reply by the author.
  • Besag, J. (1975). Statistical analysis of non-lattice data. Statistician 24 179–195.
  • Bjørnstad, J.F. (1990). Predictive likelihood: A review. Statist. Sci. 5 242–265. With comments and a rejoinder by the author.
  • Brazzale, A.R., Davison, A.C. and Reid, N. (2007). Applied Asymptotics: Case Studies in Small-Sample Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 23. Cambridge: Cambridge Univ. Press.
  • Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalised linear models. J. Amer. Statist. Assoc. 88 9–25.
  • Brown, E.N., Barbieri, R., Eden, U.T. and Frank, L.M. (2004). Likelihood methods for neural spike train data analysis. In Computational Neuroscience. Chapman & Hall/CRC Math. Biol. Med. Ser. 253–286. Boca Raton, FL: Chapman & Hall/CRC.
  • Chen, J. and Sitter, R.R. (1999). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statist. Sinica 9 385–406.
  • Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. Ser. B Stat. Methodol. 34 187–220. With discussion by F. Downton, Richard Peto, D.J. Bartholomew, D.V. Lindley, P.W. Glassborow, D.E. Barton, Susannah Howard, B. Benjamin, John J. Gart, L.D. Meshalkin, A.R. Kagan, M. Zelen, R.E. Barlow, Jack Kalbfleisch, R.L. Prentice and Norman Breslow, and a reply by D.R. Cox.
  • Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. London: Chapman & Hall.
  • Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 49 1–39. With a discussion.
  • Datta, G.S. and Mukerjee, R. (2004). Probability Matching Priors: Higher Order Asymptotics. Lecture Notes in Statistics 178. New York: Springer.
  • Davis, R.A., Klüppelberg, C. and Steinkohl, C. (2012). Statistical inference for max-stable processes in space and time. Preprint, available at arXiv:1204.5581v1, accessed on August 6, 2012.
  • Davis, R.A. and Yau, C.Y. (2011). Comments on pairwise likelihood in time series models. Statist. Sinica 21 255–277.
  • Davison, A.C. (2003). Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics 11. Cambridge: Cambridge Univ. Press.
  • Davison, A.C., Padoan, S.A. and Ribatet, M. (2012). Statistical modelling of spatial extremes. Statist. Sci. 27 161–186.
  • DiCiccio, T.J. and Martin, M.A. (1993). Simple modifications for signed roots of likelihood ratio statistics. J. R. Stat. Soc. Ser. B Stat. Methodol. 55 305–316.
  • Divino, F., Frigessi, A. and Green, P.J. (2000). Penalized pseudolikelihood inference in spatial interaction models with covariates. Scand. J. Statist. 27 445–458.
  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348–1360.
  • Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 419–474.
  • Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc. A 222, 309–368.
  • Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh: Oliver and Boyd. Third edition 1973.
  • Fraser, D.A.S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249–264.
  • Gao, X. and Massam, H. (2012). Composite likelihood estimation of high dimensional Gaussian graphical models with symmetry. Presented at BIRS Workshop on Composite Likelihood, April, 2012 (see Joe (2012)).
  • Gao, X. and Song, P.X.K. (2010). Composite likelihood Bayesian information criteria for model selection in high-dimensional data. J. Amer. Statist. Assoc. 105 1531–1540. Supplementary materials available online.
  • Geyer, C.J. and Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc. Ser. B Stat. Methodol. 54 657–699. With discussion and a reply by the authors.
  • Green, P.J. (1987). Penalized likelihood for general semi-parametric regression models. Internat. Statist. Rev. 55 245–259.
  • Hjort, N.L., McKeague, I.W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Ann. Statist. 37 1079–1111.
  • Joe, H. (2012). Report on the Workshop on Composite Likelihood. Available at http://www.birs.ca/events/2012/5-day-workshops/12w5046.
  • Lee, Y. and Nelder, J.A. (1996). Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 619–678. With discussion.
  • Lee, Y., Nelder, J.A. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via $H$-Likelihood. Monographs on Statistics and Applied Probability 106. Boca Raton, FL: Chapman & Hall/CRC.
  • Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13–22.
  • Lindsay, B.G. (1988). Composite likelihood methods. In Statistical Inference from Stochastic Processes (Ithaca, NY, 1987). Contemp. Math. 80 221–239. Providence, RI: Amer. Math. Soc.
  • Marin, J.M., Pudlo, P., Robert, C.P. and Ryder, R.J. (2011). Approximate Bayesian computational methods. Statist. Comput. 21 1–14.
  • Murphy, S.A. and van der Vaart, A.W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449–485. With comments and a rejoinder by the authors.
  • Owen, A. (2001). Empirical Likelihood. London: Chapman & Hall/CRC.
  • Pace, L. and Salvan, A. (1997). Principles of Statistical Inference From a Neo-Fisherian Perspective. Advanced Series on Statistical Science & Applied Probability 4. River Edge, NJ: World Scientific.
  • Pace, L. and Salvan, A. (2006). Adjustments of the profile likelihood from a new perspective. J. Statist. Plann. Inference 136 3554–3564.
  • Renard, D., Molenberghs, G. and Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Comput. Statist. Data Anal. 44 649–667.
  • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319–392.
  • Severini, T.A. (2000). Likelihood Methods in Statistics. Oxford Statistical Science Series 22. Oxford: Oxford Univ. Press.
  • Sisson, S.A., Fan, Y. and Tanaka, M.M. (2007). Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104 1760–1765 (electronic).
  • Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82–86.
  • van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.
  • Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statist. Sinica 21 5–42.
  • Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61 439–447.
  • Wu, C. and Rao, J.N.K. (2006). Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Canad. J. Statist. 34 359–375.
  • Xue, L., Zou, H. and Cai, T. (2012). Non-concave penalized composite conditional likelihood estimation of sparse Ising models. Ann. Statist. 40 1403–1429.