Bernoulli
- Bernoulli
- Volume 19, Number 4 (2013), 1404-1418.
Aspects of likelihood inference
Full-text: Open access
Abstract
I review the classical theory of likelihood based inference and consider how it is being extended and developed for use in complex models and sampling schemes.
Article information
Source
Bernoulli, Volume 19, Number 4 (2013), 1404-1418.
Dates
First available in Project Euclid: 27 August 2013
Permanent link to this document
https://projecteuclid.org/euclid.bj/1377612858
Digital Object Identifier
doi:10.3150/12-BEJSP03
Mathematical Reviews number (MathSciNet)
MR3102557
Zentralblatt MATH identifier
1273.62053
Keywords
approximate pivotal quantities composite likelihood Laplace approximation nuisance parameter parametric inference $r^{*}$ approximation
Citation
Reid, Nancy. Aspects of likelihood inference. Bernoulli 19 (2013), no. 4, 1404--1418. doi:10.3150/12-BEJSP03. https://projecteuclid.org/euclid.bj/1377612858
References
- Apanasovich, T.V., Ruppert, D., Lupton, J.R., Popovic, N., Turner, N.D., Chapkin, R.S. and Carroll, R.J. (2008). Aberrant crypt foci and semiparametric modeling of correlated binary data. Biometrics 64 490–500, 667.Mathematical Reviews (MathSciNet): MR2432419
Digital Object Identifier: doi:10.1111/j.1541-0420.2007.00892.x - Barndorff-Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics. Monographs on Statistics and Applied Probability 52. London: Chapman & Hall.Mathematical Reviews (MathSciNet): MR1317097
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 192–236. With discussion by D.R. Cox, A.G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J.M. Hammersley, and M.S. Bartlett and with a reply by the author.Mathematical Reviews (MathSciNet): MR373208
- Besag, J. (1975). Statistical analysis of non-lattice data. Statistician 24 179–195.
- Bjørnstad, J.F. (1990). Predictive likelihood: A review. Statist. Sci. 5 242–265. With comments and a rejoinder by the author.Mathematical Reviews (MathSciNet): MR1062578
Digital Object Identifier: doi:10.1214/ss/1177012175
Project Euclid: euclid.ss/1177012175 - Brazzale, A.R., Davison, A.C. and Reid, N. (2007). Applied Asymptotics: Case Studies in Small-Sample Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 23. Cambridge: Cambridge Univ. Press.Mathematical Reviews (MathSciNet): MR2342742
- Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalised linear models. J. Amer. Statist. Assoc. 88 9–25.
- Brown, E.N., Barbieri, R., Eden, U.T. and Frank, L.M. (2004). Likelihood methods for neural spike train data analysis. In Computational Neuroscience. Chapman & Hall/CRC Math. Biol. Med. Ser. 253–286. Boca Raton, FL: Chapman & Hall/CRC.Mathematical Reviews (MathSciNet): MR2029664
- Chen, J. and Sitter, R.R. (1999). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statist. Sinica 9 385–406.Mathematical Reviews (MathSciNet): MR1707846
- Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. Ser. B Stat. Methodol. 34 187–220. With discussion by F. Downton, Richard Peto, D.J. Bartholomew, D.V. Lindley, P.W. Glassborow, D.E. Barton, Susannah Howard, B. Benjamin, John J. Gart, L.D. Meshalkin, A.R. Kagan, M. Zelen, R.E. Barlow, Jack Kalbfleisch, R.L. Prentice and Norman Breslow, and a reply by D.R. Cox.Mathematical Reviews (MathSciNet): MR341758
- Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. London: Chapman & Hall.Mathematical Reviews (MathSciNet): MR370837
- Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 49 1–39. With a discussion.Mathematical Reviews (MathSciNet): MR893334
- Datta, G.S. and Mukerjee, R. (2004). Probability Matching Priors: Higher Order Asymptotics. Lecture Notes in Statistics 178. New York: Springer.Mathematical Reviews (MathSciNet): MR2053794
- Davis, R.A., Klüppelberg, C. and Steinkohl, C. (2012). Statistical inference for max-stable processes in space and time. Preprint, available at arXiv:1204.5581v1, accessed on August 6, 2012.arXiv: 1204.5581v1
- Davis, R.A. and Yau, C.Y. (2011). Comments on pairwise likelihood in time series models. Statist. Sinica 21 255–277.Mathematical Reviews (MathSciNet): MR2796862
- Davison, A.C. (2003). Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics 11. Cambridge: Cambridge Univ. Press.Mathematical Reviews (MathSciNet): MR1998913
- Davison, A.C., Padoan, S.A. and Ribatet, M. (2012). Statistical modelling of spatial extremes. Statist. Sci. 27 161–186.Mathematical Reviews (MathSciNet): MR2963980
Digital Object Identifier: doi:10.1214/11-STS376
Project Euclid: euclid.ss/1340110864 - DiCiccio, T.J. and Martin, M.A. (1993). Simple modifications for signed roots of likelihood ratio statistics. J. R. Stat. Soc. Ser. B Stat. Methodol. 55 305–316.Mathematical Reviews (MathSciNet): MR1210437
- Divino, F., Frigessi, A. and Green, P.J. (2000). Penalized pseudolikelihood inference in spatial interaction models with covariates. Scand. J. Statist. 27 445–458.
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348–1360.Mathematical Reviews (MathSciNet): MR1946581
Digital Object Identifier: doi:10.1198/016214501753382273 - Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 419–474.Mathematical Reviews (MathSciNet): MR2925370
Digital Object Identifier: doi:10.1111/j.1467-9868.2011.01010.x - Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc. A 222, 309–368.
- Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh: Oliver and Boyd. Third edition 1973.Mathematical Reviews (MathSciNet): MR346955
- Fraser, D.A.S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249–264.
- Gao, X. and Massam, H. (2012). Composite likelihood estimation of high dimensional Gaussian graphical models with symmetry. Presented at BIRS Workshop on Composite Likelihood, April, 2012 (see Joe (2012)).
- Gao, X. and Song, P.X.K. (2010). Composite likelihood Bayesian information criteria for model selection in high-dimensional data. J. Amer. Statist. Assoc. 105 1531–1540. Supplementary materials available online.Mathematical Reviews (MathSciNet): MR2796569
Digital Object Identifier: doi:10.1198/jasa.2010.tm09414 - Geyer, C.J. and Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc. Ser. B Stat. Methodol. 54 657–699. With discussion and a reply by the authors.Mathematical Reviews (MathSciNet): MR1185217
- Green, P.J. (1987). Penalized likelihood for general semi-parametric regression models. Internat. Statist. Rev. 55 245–259.
- Hjort, N.L., McKeague, I.W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Ann. Statist. 37 1079–1111.Mathematical Reviews (MathSciNet): MR2509068
Digital Object Identifier: doi:10.1214/07-AOS555
Project Euclid: euclid.aos/1239369016 - Joe, H. (2012). Report on the Workshop on Composite Likelihood. Available at http://www.birs.ca/events/2012/5-day-workshops/12w5046.
- Lee, Y. and Nelder, J.A. (1996). Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 619–678. With discussion.Mathematical Reviews (MathSciNet): MR1410182
- Lee, Y., Nelder, J.A. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via $H$-Likelihood. Monographs on Statistics and Applied Probability 106. Boca Raton, FL: Chapman & Hall/CRC.Mathematical Reviews (MathSciNet): MR2259540
- Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13–22.
- Lindsay, B.G. (1988). Composite likelihood methods. In Statistical Inference from Stochastic Processes (Ithaca, NY, 1987). Contemp. Math. 80 221–239. Providence, RI: Amer. Math. Soc.
- Marin, J.M., Pudlo, P., Robert, C.P. and Ryder, R.J. (2011). Approximate Bayesian computational methods. Statist. Comput. 21 1–14.Mathematical Reviews (MathSciNet): MR2992292
Digital Object Identifier: doi:10.1007/s11222-011-9288-2 - Murphy, S.A. and van der Vaart, A.W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449–485. With comments and a rejoinder by the authors.Mathematical Reviews (MathSciNet): MR1803168
Digital Object Identifier: doi:10.1080/01621459.2000.10474219 - Owen, A. (2001). Empirical Likelihood. London: Chapman & Hall/CRC.
- Pace, L. and Salvan, A. (1997). Principles of Statistical Inference From a Neo-Fisherian Perspective. Advanced Series on Statistical Science & Applied Probability 4. River Edge, NJ: World Scientific.Mathematical Reviews (MathSciNet): MR1476674
- Pace, L. and Salvan, A. (2006). Adjustments of the profile likelihood from a new perspective. J. Statist. Plann. Inference 136 3554–3564.Mathematical Reviews (MathSciNet): MR2256276
Digital Object Identifier: doi:10.1016/j.jspi.2004.11.016 - Renard, D., Molenberghs, G. and Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Comput. Statist. Data Anal. 44 649–667.Mathematical Reviews (MathSciNet): MR2026438
- Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319–392.Mathematical Reviews (MathSciNet): MR2649602
Digital Object Identifier: doi:10.1111/j.1467-9868.2008.00700.x - Severini, T.A. (2000). Likelihood Methods in Statistics. Oxford Statistical Science Series 22. Oxford: Oxford Univ. Press.Mathematical Reviews (MathSciNet): MR1854870
- Sisson, S.A., Fan, Y. and Tanaka, M.M. (2007). Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104 1760–1765 (electronic).
- Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82–86.Mathematical Reviews (MathSciNet): MR830567
Digital Object Identifier: doi:10.1080/01621459.1986.10478240 - van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.Mathematical Reviews (MathSciNet): MR1652247
- Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statist. Sinica 21 5–42.Mathematical Reviews (MathSciNet): MR2796852
- Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61 439–447.Mathematical Reviews (MathSciNet): MR375592
- Wu, C. and Rao, J.N.K. (2006). Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Canad. J. Statist. 34 359–375.
- Xue, L., Zou, H. and Cai, T. (2012). Non-concave penalized composite conditional likelihood estimation of sparse Ising models. Ann. Statist. 40 1403–1429.Mathematical Reviews (MathSciNet): MR3015030
Digital Object Identifier: doi:10.1214/12-AOS1017
Project Euclid: euclid.aos/1344610588

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Asymptotics for the maximum sample likelihood estimator under informative selection from a finite population
Bonnéry, Daniel, Breidt, F. Jay, and Coquet, François, Bernoulli, 2018 - Marginal likelihood and model selection for Gaussian latent tree and forest models
Drton, Mathias, Lin, Shaowei, Weihs, Luca, and Zwiernik, Piotr, Bernoulli, 2017 - Likelihood Inference for Models with Unobservables: Another View
Lee, Youngjo and Nelder, John A., Statistical Science, 2009
- Asymptotics for the maximum sample likelihood estimator under informative selection from a finite population
Bonnéry, Daniel, Breidt, F. Jay, and Coquet, François, Bernoulli, 2018 - Marginal likelihood and model selection for Gaussian latent tree and forest models
Drton, Mathias, Lin, Shaowei, Weihs, Luca, and Zwiernik, Piotr, Bernoulli, 2017 - Likelihood Inference for Models with Unobservables: Another View
Lee, Youngjo and Nelder, John A., Statistical Science, 2009 - A Bayesian Formulation of Exploratory Data Analysis and Goodness-of-fit Testing
Gelman, Andrew, International Statistical Review, 2003 - Bayesian nonhomogeneous Markov models via Pólya-Gamma data augmentation with applications to rainfall modeling
Holsclaw, Tracy, Greene, Arthur M., Robertson, Andrew W., and Smyth, Padhraic, The Annals of Applied Statistics, 2017 - Modeling social networks from sampled
data
Handcock, Mark S. and Gile, Krista J., The Annals of Applied Statistics, 2010 - A penalized likelihood estimation approach to semiparametric sample selection binary response modeling
Marra, Giampiero and Radice, Rosalba, Electronic Journal of Statistics, 2013 - CADEM: A conditional augmented data EM algorithm for fitting one parameter probit models
Azevedo, C. L. N. and Andrade, D. F., Brazilian Journal of Probability and Statistics, 2013 - Multiscale likelihood analysis and complexity penalized estimation
Kolaczyk, Eric D. and Nowak, Robert D., The Annals of Statistics, 2004 - An extended empirical saddlepoint approximation for intractable likelihoods
Fasiolo, Matteo, Wood, Simon N., Hartig, Florian, and Bravington, Mark V., Electronic Journal of Statistics, 2018