• Bernoulli
  • Volume 19, Number 2 (2013), 426-461.

Estimation of the lead-lag parameter from non-synchronous data

M. Hoffmann, M. Rosenbaum, and N. Yoshida

Full-text: Open access


We propose a simple continuous time model for modeling the lead-lag effect between two financial assets. A two-dimensional process $(X_{t},Y_{t})$ reproduces a lead-lag effect if, for some time shift $\vartheta\in\mathbb{R} $, the process $(X_{t},Y_{t+\vartheta})$ is a semi-martingale with respect to a certain filtration. The value of the time shift $\vartheta$ is the lead-lag parameter. Depending on the underlying filtration, the standard no-arbitrage case is obtained for $\vartheta=0$. We study the problem of estimating the unknown parameter $\vartheta\in\mathbb{R}$, given randomly sampled non-synchronous data from $(X_{t})$ and $(Y_{t})$. By applying a certain contrast optimization based on a modified version of the Hayashi–Yoshida covariation estimator, we obtain a consistent estimator of the lead-lag parameter, together with an explicit rate of convergence governed by the sparsity of the sampling design.

Article information

Bernoulli, Volume 19, Number 2 (2013), 426-461.

First available in Project Euclid: 13 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

contrast estimation discretely observed continuous-time processes Hayashi–Yoshida covariation estimator lead-lag effect


Hoffmann, M.; Rosenbaum, M.; Yoshida, N. Estimation of the lead-lag parameter from non-synchronous data. Bernoulli 19 (2013), no. 2, 426--461. doi:10.3150/11-BEJ407.

Export citation


  • [1] Bandi, F.M. and Russell, J.R. (2008). Microstructure noise, realized variance, and optimal sampling. Rev. Econom. Stud. 75 339–369.
  • [2] Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A. and Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76 1481–1536.
  • [3] Chiao, C., Hung, K. and Lee, C.F. (2004). The price adjustment and lead-lag relations between stock returns: Microstructure evidence from the Taiwan stock market. Empirical Finance 11 709–731.
  • [4] Comte, F. and Renaut, E. (1996). Non-causality in continuous time models. Econometric Theory 12 215–256.
  • [5] Dalalyan, A. and Yoshida, N. (2008). Second-order asymptotic expansion for the covariance estimator of two asynchronously observed diffusion processes. Preprint. Available at arXiv:0804.0676.
  • [6] de Jong, F. and Nijman, T. (1997). High frequency analysis of Lead-Lag relationships between financial markets. Journal of Empirical Finance 4 259–277.
  • [7] Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 119–151.
  • [8] Hansen, P.R. and Lunde, A. (2006). Realized variance and market microstructure noise. J. Bus. Econom. Statist. 24 127–161.
  • [9] Hayashi, T. and Kusuoka, S. (2008). Consistent estimation of covariation under nonsynchronicity. Stat. Inference Stoch. Process. 11 93–106.
  • [10] Hayashi, T. and Yoshida, N. (2005). Estimating correlations with missing observations in continuous diffusion models. Preprint.
  • [11] Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11 359–379.
  • [12] Hayashi, T. and Yoshida, N. (2006). Nonsynchronous covariance estimator and limit theorem. Research Memorandum 1020, Institute of Statistical Mathematics.
  • [13] Hayashi, T. and Yoshida, N. (2008). Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes. Ann. Inst. Statist. Math. 60 367–406.
  • [14] Hayashi, T. and Yoshida, N. (2008). Nonsynchronous covariance estimator and limit theorem II. Research Memorandum 1067, Institute of Statistical Mathematics.
  • [15] Hoshikawa, T., Nagai, K., Kanatani, T. and Nishiyama, Y. (2008). Nonparametric estimation methods of integrated multivariate volatilities. Econometric Rev. 27 112–138.
  • [16] Ibragimov, I.A. and Hasminskiĭ, R.Z. (1981). Statistical Estimation, Asymptotic Theory. Applications of Mathematics 16. New York: Springer. Translated from the Russian by Samuel Kotz.
  • [17] Jacod, J., Li, Y., Mykland, P.A., Podolskij, M. and Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Process. Appl. 119 2249–2276.
  • [18] Kang, J., Lee, C. and Lee, S. (2006). Empirical investigation of the lead-lag relations of returns and volatilities among the KOSPI200 spot, futures and options markets and their explanations. Journal of Emerging Market Finance 5 235–261.
  • [19] Malliavin, P. and Mancino, M.E. (2002). Fourier series method for measurement of multivariate volatilities. Finance Stoch. 6 49–61.
  • [20] O’Connor, M. (1999). The cross-sectional relationship between trading costs and lead/lag effects in stock & option markets. The Financial Review 34 95–117.
  • [21] Robert, C.Y. and Rosenbaum, M. (2011). A new approach for the dynamics of ultra high frequency data: The model with uncertainty zones. Journal of Financial Econometrics 9 344–366.
  • [22] Robert, C.Y. and Rosenbaum, M. (2012). Volatility and covariation estimation when microstructure noise and trading times are endogenous. Math. Finance 22 133–164.
  • [23] Robert, C.Y. and Rosenbaum, M. (2010). On the limiting spectral distribution of the covariance matrices of time-lagged processes. J. Multivariate Anal. 101 2434–2451.
  • [24] Rosenbaum, M. (2009). Integrated volatility and round-off error. Bernoulli 15 687–720.
  • [25] Rosenbaum, M. (2011). A new microstructure noise index. Quant. Finance 11 883–899.
  • [26] Ubukata, M. and Oya, K. (2008). A test for dependence and covariance estimator of market microstructure noise. Discussion Papers in Economics And Business, 07-03-Rev.2, 112–138.
  • [27] Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. J. Econometrics 160 33–47.
  • [28] Zhang, L., Mykland, P.A. and Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100 1394–1411.