• Bernoulli
  • Volume 16, Number 2 (2010), 389-417.

Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus

Christian Bender and Peter Parczewski

Full-text: Open access


We approximate the solution of some linear systems of SDEs driven by a fractional Brownian motion BH with Hurst parameter H∈(½, 1) in the Wick–Itô sense, including a geometric fractional Brownian motion. To this end, we apply a Donsker-type approximation of the fractional Brownian motion by disturbed binary random walks due to Sottinen. Moreover, we replace the rather complicated Wick products by their discrete counterpart, acting on the binary variables, in the corresponding systems of Wick difference equations. As the solutions of the SDEs admit series representations in terms of Wick powers, a key to the proof of our Euler scheme is an approximation of the Hermite recursion formula for the Wick powers of BH.

Article information

Bernoulli, Volume 16, Number 2 (2010), 389-417.

First available in Project Euclid: 25 May 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

discrete Wick calculus fractional Brownian motion weak convergence Wick–Itô integral


Bender, Christian; Parczewski, Peter. Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus. Bernoulli 16 (2010), no. 2, 389--417. doi:10.3150/09-BEJ223.

Export citation


  • [1] Alòs, E., Mazet, O. and Nualart, D. (2001). Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 766–801.
  • [2] Bender, C. (2003). An S-transform approach to integration with respect to a fractional Brownian motion. Bernoulli 6 955–983.
  • [3] Bender, C. and Elliott, R.J. (2004). Arbitrage in a discrete version of the Wick-fractional Black–Scholes market. Math. Oper. Res. 29 935–945.
  • [4] Biagini, F., Hu, Y., Øksendal, B. and Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and Its Applications. London: Springer.
  • [5] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.
  • [6] Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I: Theory. SIAM J. Control Optim. 38 582–612.
  • [7] Elliott, R.J. and van der Hoek, J. (2003). A general fractional white noise theory and applications to finance. Math. Finance 13 301–330.
  • [8] Gaigalas, R. and Kaj, I. (2003). Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 671–703.
  • [9] Gzyl, H. (2006). An exposé on discrete Wiener chaos expansions. Bol. Asoc. Mat. Venez. 13 3–27.
  • [10] Holden, H., Lindstrøm, T., Øksendal, B. and Ubøe, J. (1992). Discrete Wick calculus and stochastic functional equations. Potential Anal. 1 291–306.
  • [11] Holden H., Øksendal, B., Ubøe, J. and Zhang, T. (1996). Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach. Probability and Its Applications. Basel: Birkhäuser.
  • [12] Hu, Y. and Øksendal, B. (2003). Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 1–32.
  • [13] Hu, Y. and Yan, J.A. (2009). Wick calculus for nonlinear Gaussian functionals. Acta Math. Appl. Sin. Engl. Ser. 25 399–414.
  • [14] Kuo, H.-H. (1996). White Noise Distribution Theory. Probability and Stochastics Series. Boca Raton, FL: CRC Press.
  • [15] Mishura, Y. (2008). Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Math. 1929. Berlin: Springer.
  • [16] Molchan, G. (1969). Gaussian processes with spectra which are asymptotically equivalent to a power of λ. Theory Probab. Appl. 14 530–532.
  • [17] Molchan, G. and Golosov, J. (1969). Gaussian stationary processes with asymptotic power spectrum. Soviet. Math. Dokl. 10 134–137.
  • [18] Norros, I., Valkeila, E. and Virtamo, J. (1999). An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 571–587.
  • [19] Nieminen, A. (2004). Fractional Brownian motion and martingale-differences. Statist. Probab. Lett. 70 1–10.
  • [20] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications. Berlin: Springer.
  • [21] Sottinen, T. (2001). Fractional Brownian motion, random walks and binary market models. Finance Stoch. 5 343–355.
  • [22] Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287–302.
  • [23] Valkeila, E. (2010). On the approximation of geometric fractional Brownian motion. In Optimality and Risk—Modern Trends in Mathematical Finance. Springer.