Bernoulli

  • Bernoulli
  • Volume 13, Number 4 (2007), 966-980.

Random environment on coloured trees

Mikhail Menshikov, Dimitri Petritis, and Stanislav Volkov

Full-text: Open access

Abstract

In this paper, we study a regular rooted coloured tree with random labels assigned to its edges, where the distribution of the label assigned to an edge depends on the colours of its endpoints. We obtain some new results relevant to this model and also show how our model generalizes many other probabilistic models, including random walk in random environment on trees, recursive distributional equations and multi-type branching random walk on ℝ.

Article information

Source
Bernoulli, Volume 13, Number 4 (2007), 966-980.

Dates
First available in Project Euclid: 9 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.bj/1194625598

Digital Object Identifier
doi:10.3150/07-BEJ101

Mathematical Reviews number (MathSciNet)
MR2364222

Zentralblatt MATH identifier
1132.60073

Keywords
branching random walks first-passage percolation random environment on trees random walk in random environment recursive distributional equations

Citation

Menshikov, Mikhail; Petritis, Dimitri; Volkov, Stanislav. Random environment on coloured trees. Bernoulli 13 (2007), no. 4, 966--980. doi:10.3150/07-BEJ101. https://projecteuclid.org/euclid.bj/1194625598


Export citation

References

  • Athreya, K.B. and Nay, P. (1972)., Branching Processes. New York: Springer.
  • Biggins, J.D. (1976). The first- and last-birth problems for a multitype age-dependent branching, process. Adv. in Appl. Probab. 8 446--459.
  • Biggins, J.D. (1997). How fast does a general branching random walk spread? In, Classical and Modern Branching Processes (Minneapolis, MN, 1994) 19--39. IMA Vol. Math. Appl. 84. New York: Springer.
  • Biggins, J.D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks., Adv. in Appl. Probab. 37 681--705.
  • Dekking, F.M. and Host, B. (1991). Limit distributions for minimal displacement of branching random walks., Probab. Theory Related Fields 90 403--426.
  • den Hollander, F. (2000)., Large Deviations. Providence, RI: Amer. Math. Soc.
  • Doyle, P.G. and Snell, J. (1984)., Random Walks and Electric Networks. Washington, DC: Mathematical Association of America.
  • Lagarias, J.C. (2004). The $3x+1$ problem: An annotated bibliography. Preprint. Available at http://arxiv.org/abs/math.NT/0309224,
  • Lyons, R. and Pemantle, R. (1992). Random walk in a random environment and first-passage percolation on trees., Ann. Probab. 20 125--136.
  • Neininger, R. and Rüschendorf, L. (2004). A general limit theorem for recursive algorithms and combinatorial structures., Ann. Appl. Probab. 14 378--418.
  • Pemantle, R. (1995). Tree-indexed processes., Statist. Sci. 10 200--213.
  • Sinai, Ya.G. Personal, communications.
  • Solomon, F. (1975). Random walks in a random environment., Ann. Probab. 3 1--31.
  • Volkov, S. (2006). Probabilistic model for the $5x+1$ problem and related maps., Stoch. Proc. Appl. 116 662--674.