Bernoulli

  • Bernoulli
  • Volume 1, Number 4 (1995), 343-370.

Hybrid zones and voter model interfaces

J.T. Cox and R. Durrett

Full-text: Open access

Abstract

We study the dynamics of hybrid zones in the absence of selection. In dimensions d>1 the width of the hybrid zone grows as \sqrt{t} but in one dimension the width converges to a non-degenerate limit. We believe that tight interfaces are common in one-dimensional particle systems.

Article information

Source
Bernoulli, Volume 1, Number 4 (1995), 343-370.

Dates
First available in Project Euclid: 30 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.bj/1193758711

Digital Object Identifier
doi:10.3150/bj/1193758711

Mathematical Reviews number (MathSciNet)
MR1369166

Zentralblatt MATH identifier
0849.60088

Keywords
hybrid zones random walk recurrent potential kernel stochastic spatial model voter model interfaces

Citation

Cox, J.T.; Durrett, R. Hybrid zones and voter model interfaces. Bernoulli 1 (1995), no. 4, 343--370. doi:10.3150/bj/1193758711. https://projecteuclid.org/euclid.bj/1193758711


Export citation