• Bernoulli
  • Volume 13, Number 3 (2007), 820-830.

On Itô’s formula for elliptic diffusion processes

Xavier Bardina and Carles Rovira

Full-text: Open access


Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83–109] prove an extension of Itô’s formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303–328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.

Article information

Bernoulli, Volume 13, Number 3 (2007), 820-830.

First available in Project Euclid: 7 August 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

diffusion processes integration with respect to local time Itô’s formula local time


Bardina, Xavier; Rovira, Carles. On Itô’s formula for elliptic diffusion processes. Bernoulli 13 (2007), no. 3, 820--830. doi:10.3150/07-BEJ6049.

Export citation


  • Azéma, J., Jeulin, T., Knight, F. and Yor, M. (1998). Quelques calculs de compensateurs impliquant l'injectivité de certains processus croissants. Séminaire de Probabilités XXXII. Lecture Notes in Math. 1686 316–327.
  • Bardina, X. and Jolis, M. (1997). An extension of Itô's formula for elliptic diffusion processes. Stochastic Process Appl. 69 83–109.
  • Bouleau, N. and Yor, M. (1981). Sur la variation quadratique des temps locaux de certaines semimartingales. C. R. Acad. Sci. Paris Sér. I Math. 292 491–494.
  • Dupoiron, K., Mathieu, P. and San Martin, J. (2004). Formule d'Itô pour des diffusions uniformément elliptiques, et processus de Dirichlet. Potential Anal. 21 7–33.
  • Eisenbaum, N. (2000). Integration with respect to local time. Potential Anal. 13 303–328.
  • Eisenbaum, N. (2001). On Itô's formula of Föllmer and Protter. Séminaire de Probabilités XXXV. Lecture Notes in Math. 1755 390–395.
  • Eisenbaum, N. (2006). Local time-space stochastic calculus for Lévy processes. Stochastic Process. Appl. 116 757–778.
  • Errami, M., Russo, F. and Vallois, P. (2002). Itô's formula for $C\sp{1,\lambda}$-functions of a càdlàg process and related calculus. Probab. Theory Related Fields 122 191–221.
  • Föllmer, H., Protter, P. and Shiryayev, A.N. (1995). Quadratic covariation and an extension of Itô's formula. Bernoulli 1 149–169.
  • Ghomrasni, R. and Peskir, G. (2003). Local time-space calculus and extensions of Itô's formula. High dimensional probability III (Sandjberg, 2002). Progr. Probab. 55 177–192.
  • Itô, K. (1944). Stochastic integral. Proc. Imp. Acad. Tokyo 20 519–524.
  • Kunita, H. and Watanabe, S. (1967). On square integrable martingales. Nagoya Math. J. 30 209–245.
  • Millet, A., Nualart, D. and Sanz-Solé, M. (1989). Integration by parts and time reversal for diffusion processes. Ann. Probab. 17 208–238.
  • Peskir, G. (2005). A change-of-variable formula with local time on curves. J. Theoret. Probab. 18 499–535.
  • Tanaka, H. (1962). Note on continuous additive functionals of the $1$-dimensional Brownian path. Z. Wahrsch. und Verw. Gebiete 1 251–257.