Bernoulli

  • Bernoulli
  • Volume 4, Number 3 (1998), 377-399.

Lift zonoids, random convex hulls and the variability of random vectors

Gleb Koshevoy and Karl Mosler

Full-text: Open access

Abstract

For a d -variate measure a convex, compact set in R d +1 , its lift zonoid, is constructed. This yields an embedding of the class of d -variate measures having finite absolute first moments into the space of convex, compact sets in R d +1 . The embedding is continuous, positive homogeneous and additive and has useful applications to the analysis and comparison of random vectors. The lift zonoid is related to random convex sets and to the convex hull of a multivariate random sample. For an arbitrary sampling distribution, bounds are derived on the expected volume of the random convex hull. The set inclusion of lift zonoids defines an ordering of random vectors that reflects their variability. The ordering is investigated in detail and, as an application, inequalities for random determinants are given.

Article information

Source
Bernoulli, Volume 4, Number 3 (1998), 377-399.

Dates
First available in Project Euclid: 19 March 2007

Permanent link to this document
https://projecteuclid.org/euclid.bj/1174324985

Mathematical Reviews number (MathSciNet)
MR1653276

Zentralblatt MATH identifier
0945.52006

Keywords
convex sets dilation measure metric ordering of istributios random determinants random convex sets

Citation

Koshevoy, Gleb; Mosler, Karl. Lift zonoids, random convex hulls and the variability of random vectors. Bernoulli 4 (1998), no. 3, 377--399. https://projecteuclid.org/euclid.bj/1174324985


Export citation

References

  • [1] Bolker, E.D. (1969) A class of convex bodies. Trans. Amer. Math. Soc., 145, 323-346.
  • [2] Bonnesen, J. and Fenchel, W. (1934) Theorie der konvexen Körper. Berlin: Springer Verlag.
  • [3] Efron, B. (1965) The convex hull of a random set of points. Biometrika, 52, 331-343.
  • [4] Eggleston, H.G. (1958) Convexity. New York: Cambridge University Press.
  • [5] Goodey, P. and Weil, W. (1993) Zonoids and generalizations. In P.M. Gruber and J.M. Wills (eds), Handbook of Convex Geometry, pp. 1297-1326. Amsterdam: North-Holland.
  • [6] Helgason, S. (1980) The Radon Transform. Prog. Math. 5. Boston: Birkhäuser.
  • [7] Koshevoy, G. (1995) Multivariate Lorenz majorization. Soc. Choice and Welf., 12, 93-102.
  • [8] Laha, R.G. and Rohatgi, V.K. (1979) Probability Theory. New York: Wiley.
  • [9] Lindenstrauss, J. (1966) A short proof of Liapounoff 's convexity theorem. J. Math. Mech. 15, 971-972.
  • [10] Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979) Multivariate Analysis. London: Academic Press.
  • [11] Mosler, K. and Scarsini, M. (1991) Some theory of stochastic dominance. In K. Mosler and M. Scarsini (eds), Stochastic Orders and Decision under Risk, pp. 261-284. Hayward, CA: Institute of Mathematical Statistics.
  • [12] Phelps, R.R. (1966) Lectures on Choquet's Theorem. Princeton, NJ: Van Nostrand.
  • [13] Rényi, A. and Sulanke, R. (1963) Über die konvexe Hü lle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie Verw. Geb., 2, 75-84.
  • [14] Rényi, A. and Sulanke, R. (1964) Über die konvexe Hülle von n zufällig gewählten Punkten II. Z. Wahrscheinlichkeitstheorie Verw. Geb., 3, 138-147.
  • [15] Rickert, N.W. (1967) The range of a measure. Bull. Amer. Math. Soc., 73, 560-563.
  • [16] Schneider, R. (1967) Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z., 101, 71-82.
  • [17] Schneider, R. and Weil, W. (1983) Zonoids and related topics. In P.M. Gruber and J.M. Wills (eds), Convexity and Its Applications, pp. 296-317. Basel: Birkhäuser.
  • [18] Shaked, M. and Shanthikumar, J.G. (1994) Stochastic Orders and Their Applications. Boston: Academic Press.
  • [19] Shephard, G.C. (1974) Combinatorial properties of associated zonotopes. Canad. J. Math., 26, 302-321.
  • [20] Torgersen, E. (1991) Comparison of Statistical Experiments. Cambridge: Cambridge University Press.
  • [21] Vitale, R.A. (1991a) Expectation inequalities from convex geometry. In K. Mosler and M. Scarsini (eds), Stochastic Orders and Decision under Risk, pp. 372-379. Hayward, CA: Institute of Mathematical Statistics.
  • [22] Vitale, R.A. (1991b) Expected absolute random determinants and zonoids. Ann. Appl. Probab., 1, 293-300.
  • [23] Weil, W. and Wieacker, J.A. (1993) Stochastic geometry. In P.M. Gruber and J.M. Wills (eds) Handbook of Convex Geometry, pp. 1391-1438. Amsterdam: North-Holland.