Bernoulli

  • Bernoulli
  • Volume 12, Number 5 (2006), 801-819.

Product-limit estimators of the survival function for two modified forms of current-status data

Valentin Patilea and Jean-Marie Rolin

Full-text: Open access

Abstract

The problem of estimating the distribution of a lifetime that may be left or right censored is considered. Two data structures that extend the classical current-status data framework are introduced and the corresponding product-limit estimators are derived. The strong uniform convergence and asymptotic normality of the product-limit estimators are proved. A bootstrap procedure that can be applied to confidence intervals construction is proposed.

Article information

Source
Bernoulli, Volume 12, Number 5 (2006), 801-819.

Dates
First available in Project Euclid: 23 October 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1161614947

Digital Object Identifier
doi:10.3150/bj/1161614947

Mathematical Reviews number (MathSciNet)
MR2265343

Zentralblatt MATH identifier
1134.62068

Keywords
bootstrap current-status data delta method left and right censoring martingales product-limit estimator strong convergence weak convergence

Citation

Patilea, Valentin; Rolin, Jean-Marie. Product-limit estimators of the survival function for two modified forms of current-status data. Bernoulli 12 (2006), no. 5, 801--819. doi:10.3150/bj/1161614947. https://projecteuclid.org/euclid.bj/1161614947


Export citation

References

  • [1] Akritas, M.G. (1986) Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc., 81, 1032- 1039.
  • [2] Chen, K. and Lo, S.H. (1997) On the rate of uniform convergence of the product-limit estimator: strong and weak laws. Ann. Statist., 25, 1050-1087.
  • [3] Cupples, L.A., Risch, N., Farrer, L.A. and Myers, R.H. (1991) Estimation of morbid risk and age at onset with missing information. Amer. J. Hum. Genetics, 49, 76-87.
  • [4] Fleming, T.R. and Harrington, P. (1991) Counting Processes and Survival Analysis. New York: Wiley.
  • [5] Florens, J.P., Mouchart, M. and Rolin, J.M. (1990) Elements of Bayesian Statistics. New York: Marcel Dekker.
  • [6] Gill, R. (1983) Large sample behavior of the product-limit estimator on the whole line. Ann. Statist., 11, 49-58.
  • [7] Gill, R. (1989) Non- and semi-parametric maximum likelihood and the von Mises method. Scand. J. Statist., 16, 97-128.
  • [8] Gill, R. (1994) Lectures on survival analysis. In P. Bernard (ed.), Lectures on Probability Theory: École d´Été de Probabilités de Saint-Flour XXII - 1992, Lecture Notes in Math. 1581, pp. 115- 241. Berlin: Springer-Verlag.
  • [9] Gill, R. and Johansen, S. (1990) A survey of product-integration with a view towards application in survival analysis. Ann. Statist., 18, 1501-1555.
  • [10] Gu, M.G. and Zhang, C.-H. (1993) Asymptotic properties of self-consistent estimators based on doubly censored data. Ann. Statist., 21, 611-624.
  • [11] Hamburg, B.A., Kraemer H.C. and Jahnke, W. (1975) A hierarchy of drug use in adolescence: behavioral and attitudinal correlates of substantial drug use. Amer. J. Psychiatry, 132, 1155-1163.
  • [12] Huang, J. (1999) Asymptotic properties of nonparametric estimation based on partly interval-censored data. Statist. Sinica, 9, 501-519.
  • [13] Huang, J. and Wellner, J.A. (1997) Interval censored survival data: A review of recent progress. In D.Y. Lin and T.R. Fleming (eds), Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, pp. 123-169. New York: Springer-Verlag.
  • [14] Kim, J.S. (2003) Maximum likelihood estimation for the proportional hazards models with partly interval-censored data. J. Roy. Statist. Soc. Ser. B, 65, 489-502.
  • [15] Klein, J.P. and Moeschberger, M.L. (1997) Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer-Verlag.
  • [16] Patilea, V. and Rolin, J.-M. (2004) Product-limit estimators of the survival function with left or right censored data. Working Paper 2004-36, CREST-INSEE, Paris.
  • [17] Pollard, D. (1984) Convergence of Stochastic Processes. New York: Springer-Verlag.
  • [18] Samuelsen, S.O. (1989) Asymptotic theory for non-parametric estimators from doubly censored data. Scand. J. Statist., 16, 1-21.
  • [19] Stute, W. and Wang, J. (1993) The strong law under random censorship. Ann. Statist., 21, 1591-1607.
  • [20] Turnbull, B.W. (1974) Nonparametric estimation of a survivorship function with doubly censored data. J. Amer. Statist. Assoc., 69, 169-173.
  • [21] Turnbull, B.W. and Weiss, L. (1978) A likelihood ratio statistic for testing goodness of fit with randomly censored data. Biometrics, 34, 367-375.
  • [22] van der Laan, M.J. and Gill, R.D. (1999) Efficiency of NPMLE in nonparametric missing data models. Math. Methods Statist., 8, 251-276.
  • [23] Van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. New York: Springer-Verlag.
  • [24] Wellner, J.A. and Zhan, Y. (1996) Bootstrapping Z-estimators. Technical Report 308, University of Washington, Dept. of Statistics.
  • [25] Wellner, J.A. and Zhan, Y. (1997) A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Amer. Statist. Assoc., 92, 945-959.