Bernoulli

  • Bernoulli
  • Volume 6, Number 5 (2000), 783-808.

Time-invariance estimating equations

A.J. Baddeley

Full-text: Open access

Abstract

We describe a general method for deriving estimators of the parameter of a statistical model, with particular relevance to highly structured stochastic systems such as spatial random processes and `graphical' conditional independence models. The method is based on representing the stochastic model X as the equilibrium distribution of an auxiliary Markov process Y =(Y t,t>0) where the discrete or continuous 'time' index t is to be understood as a fictional extra dimension added to the original setting. The parameter estimate θ̂ is obtained by equating to zero the generator of Y applied to a suitable statistic and evaluated at the data x . This produces an unbiased estimating equation for θ. Natural special cases include maximum likelihood, the method of moments, the reduced sample estimator in survival analysis, the maximum pseudolikelihood estimator for random fields and for point processes, the Takacs-Fiksel method for point processes, 'variational' estimators for random fields and multivariate distributions, and many standard estimators in stochastic geometry. The approach has some affinity with the Stein-Chen method for distributional approximation.

Article information

Source
Bernoulli, Volume 6, Number 5 (2000), 783-808.

Dates
First available in Project Euclid: 6 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.bj/1081282689

Mathematical Reviews number (MathSciNet)
MR2001j:62021

Zentralblatt MATH identifier
0982.62081

Keywords
censored data conditional intensity dead leaves model diffusions generator Gibbs point processes Gibbs random fields Gibbs sampler Godambe optimality highly structured stochastic systems infinitesimal generator Markov random fields maximum likelihood maximum pseudolikelihood method of moments Nguyen-Zessin formula pseudo-likelihood reduced sample estimator spatial birth-and-death processes Stein-Chen method Takacs-Fiksel method unbiased estimating equations variational estimators

Citation

Baddeley, A.J. Time-invariance estimating equations. Bernoulli 6 (2000), no. 5, 783--808. https://projecteuclid.org/euclid.bj/1081282689


Export citation

References

  • [1] Almeida, M.P. and Gidas, B. (1993) A variational method for estimating the parameters of MRF from complete or incomplete data. Ann. Appl. Probab., 3, 103-136.
  • [2] Andersen, P.K., Borgan, E., Gill, R.D. and Keiding, N. (1993) Statistical Models Based on Counting Processes. New York: Springer-Verlag.
  • [3] Arratia, R., Goldstein, L. and Gordon, L. (1990) Poisson approximation and the Chen-Stein method. Statist. Sci., 5, 403-434.
  • [4] Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions for spatial point processes. Ann. Statist., 25, 263-292.
  • [5] Baddeley, A.J. and Möller, J. (1989) Nearest-neighbour Markov point processes and random sets. Internat. Statist. Rev., 57, 89-121.
  • [6] Barbour, A.D. (1997) Stein's method. In S. Kotz, C. Read and D.L. Banks (eds), Encyclopedia of Statistical Sciences, Update, Vol. 1, pp. 513-521. New York: Wiley.
  • [7] Barbour, A.D., Holst, L. and Janson, S. (1992) Poisson Approximation. Oxford: Oxford University Press.
  • [8] Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B, 36, 192-236.
  • [9] Besag, J. (1975) Statistical analysis of non-lattice data. The Statistician, 24, 179-195.
  • [10] Besag, J. (1977) Some methods of statistical analysis for spatial data. In Bulletin of the International Statistical Institute: Proceedings of the 41st Session (New Delhi), Vol. 47, Book 2, pp. 77-92. Voorburg, Netherlands: ISI.
  • [11] Besag, J. (1986) On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B, 48, 259-302.
  • [12] Besag, J., Milne, R. and Zachary, S. (1982) Point process limits of lattice processes. J. Appl. Probab., 19, 210-216.
  • [13] Carter, D.S. and Prenter, P.M. (1972) Exponential spaces and counting processes. Z. Wahrscheinlichkeitstheorie Verw. Geb., 21, 1-19.
  • [14] Comets, F. (1992) On consistency for a class of estimators for exponential families of Markov random fields on a lattice. Ann. Statist., 20, 455-468.
  • [15] Comets, F. and Janzura, M. (1998) A central limit theorem for conditionally centred random fields with an application to Markov fields. J. Appl. Probab., 35, 608-621.
  • [16] Daley, D.J. and Vere-Jones, D. (1988) An Introduction to the Theory of Point Processes. New York: Springer-Verlag.
  • [17] Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994) On parameter estimation for pairwise interaction processes. Internat. Statist. Rev., 62, 99-117.
  • [18] Ethier, S.N. and Kurtz, T.G. (1986) Markov Processes: Characterization and Convergence. New York: Wiley.
  • [19] Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian point processes. Elektron. Informationsverarbeitung Kybernetik, 20, 270-278.
  • [20] Fiksel, T. (1988) Estimation of interaction potentials of Gibbsian point processes. Statistics, 19, 77- 86.
  • [21] Geman, D. (1990) Random fields and inverse problems in imaging. In P.-L. Hennequin (ed.), Ecole d'Eté de Probabilités de Saint-Flour XVIII, 1988, Lecture Notes in Math. 1427. Berlin: Springer- Verlag.
  • [22] Geman, S. and Geman D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence, 6, 721-741.
  • [23] Georgii, H.-O. (1988) Gibbs Measures and Phase Transitions. Berlin: de Gruyter.
  • [24] Geyer, C.J. (1999) Likelihood inference for spatial point processes. In O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (eds), Stochastic Geometry: Likelihood and Computation, pp. 79-140. Boca Raton, FL: Chapman & Hall/CRC.
  • [25] Geyer, C.J. and Möller, J. (1994) Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist., 21(4), 359-373.
  • [26] Gill, R.D. (1994) Lectures on survival analysis. In P. Bernard (ed.), Lectures on Probability Theory: Ecole d'Eté de Probabilités de Saint-Flour XXII, 1992, Lecture Notes in Math. 1581. Berlin: Springer-Verlag.
  • [27] Godambe, V.P. and Kale, B.K. (1991) Estimating functions: an overview. In V.P. Godambe (ed.), Estimating Functions, pp. 3-20. Oxford: Clarendon Press.
  • [28] Guyon, X. (1996) Random Fields on a Network. Modelling, Statistics, and Applications. New York: Springer-Verlag.
  • [29] Hall, P. (1988) An Introduction to the Theory of Coverage Processes. New York: Wiley.
  • [30] Hansen, L.P. and Scheinkman, J.A. (1995) Back to the future: generating moment implications for continuous time Markov processes. Econometrica, 63, 767-804.
  • [31] Janzura, M. (1997) Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika, 33, 133-159.
  • [32] Jensen, J.L. and Ku¡ínsch, H.R. (1994) On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes. Ann. Inst. Statist. Math., 46, 475-486.
  • [33] Jensen, J.L. and Möller, J. (1991) Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Probab., 1, 445-461.
  • [34] Kallenberg, O. (1983) Random Measures, 3rd edn. Berlin/New York: Akademie Verlag/Academic Press.
  • [35] Kallenberg, O. (1997) Foundations of Modern Probability. New York: Springer-Verlag.
  • [36] Karlin, S. and Taylor, H.M. (1981) A Second Course on Stochastic Processes. Orlando, FL: Academic Press.
  • [37] Kelly, F.P. (1979) Reversibility and Stochastic Networks. Chichester: Wiley.
  • [38] Kelly, F.P. and Ripley, B.D. (1976) On Strauss's model for clustering. Biometrika, 63, 357-360.
  • [39] Kessler, M. and Sörensen, M. (1999) Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli, 5, 299-314.
  • [40] MacLeish, D.L. and Small, C.G. (1988) The Theory and Applications of Statistical Inference Functions, Lecture notes in Statist. 44. Berlin: Springer-Verlag.
  • [41] Matheron, G. (1969) Théorie des ensembles aléatoires. Cahiers du Centre de Morphologie Mathématique de Fontainebleau 4, Ecole Nationale Supérieure des Mines de Paris.
  • [42] Möller, J. (1989) On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Statist. Math., 41, 565-581.
  • [43] Möller, J. (1999) Markov chain Monte Carlo and spatial point processes. In O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (eds), Stochastic Geometry: Likelihood and Computation, pp. 141-172. Boca Raton, FL: Chapman & Hall/CRC.
  • [44] Nguyen, X.X. and Zessin, H. (1976) Punktprozesse mit Wechselwirkung. Z. Wahrscheinlichkeitstheorie Verw. Geb., 37, 91-126.
  • [45] Ogata, Y. and Tanemura, M. (1981) Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure. Ann. Inst. Statist. Math. B, 33, 315-338.
  • [46] Preston, C.J. (1975) Spatial birth-and-death processes. In Bulletin of the International Statistical Institute: Proceedings of the 40th Session (Warsaw), Vol. 46, Book 2, pp. 371-391. Voorburg, Netherlands: ISI.
  • [47] Ripley, B.D. (1988) Statistical Inference for Spatial Processes. Cambridge University Press.
  • [48] Ripley, B.D. (1989) Gibbsian interaction models. In D.A. Griffiths (ed.), Spatial Statistics: Past, Present and Future, pp. 1-19. New York: Image.
  • [49] Santaló, L.A. (1976) Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications, Vol. 1. Reading, MA: Addison-Wesley.
  • [50] Serra, J. (1982) Image Analysis and Mathematical Morphology. London: Academic Press.
  • [51] Stein, C. (1986) Approximate Computation of Expectations. Hayward, CA: Institute of Mathematical Statistics.
  • [52] Stein, M.L. (1995) An approach to asymptotic inference for spatial point processes. Statist. Sinica, 5, 221-234.
  • [53] Takacs, R. (1983) Estimator for the pair-potential of a Gibbsian point process. Institutsbericht 238, Institut fu¡í r Mathematik, Johannes Kepler Universitàít Linz, Austria.
  • [54] Takacs, R. (1986) Estimator for the pair potential of a Gibbsian point process. Statistics, 17, 429-433.
  • [55] Weil, W. (1989) Translative integral geometry. In A. Hu¡íbler, W. Nagel, B.D. Ripley and G. Werner (eds), Geobild 89, pp. 75-86. Berlin: Akademie Verlag.
  • [56] Weil, W. (1990) Iterations of translative integral formulae and nonisotropic Poisson processes of particles. Math. Z., 205(4), 531-549.