Bernoulli

  • Bernoulli
  • Volume 6, Number 5 (2000), 761-782.

Inhomogeneous Markov point processes by transformation

Eva B. Vedel Jensen and Linda Stougaard Nielsen

Full-text: Open access

Abstract

We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach, is that of exponential inhomogeneous Markov point processes. Statistical inference for such processes is discussed in some detail.

Article information

Source
Bernoulli, Volume 6, Number 5 (2000), 761-782.

Dates
First available in Project Euclid: 6 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.bj/1081282688

Mathematical Reviews number (MathSciNet)
MR2001k:62112

Zentralblatt MATH identifier
0998.62070

Keywords
coarea formula Hammersley-Clifford theorem Hausdorff measure inhomogeneity interaction manifolds Markov chain Monte Carlo Markov point processes maximum likelihood estimation relation Strauss process testing

Citation

Vedel Jensen, Eva B.; Stougaard Nielsen, Linda. Inhomogeneous Markov point processes by transformation. Bernoulli 6 (2000), no. 5, 761--782. https://projecteuclid.org/euclid.bj/1081282688


Export citation

References

  • [1] Baddeley, A.J. and Möller, J. (1989) Nearest-neighbour Markov point processes and random sets. Internat. Statist. Rev., 57, 89-121.
  • [2] Baddeley, A.J. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Australian and New Zealand Journal of Statistics. To appear.
  • [3] Baddeley, A.J. and van Lieshout, M.N.M. (1995) Area-interaction point processes. Ann. Inst. Statist. Math., 47, 601-619.
  • [4] Baddeley, A.J., Möller, J. and Waagepetersen, R. (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica. To appear.
  • [5] Barndorff-Nielsen, O.E. (1978) Information and Exponential Families in Statistical Theory. Chichester: Wiley.
  • [6] Brix, A. and Möller, J. (1998) Space-time multitype log Gaussian Cox processes with a view to modelling weed data. Research report no. R-98-2012, Department of Mathematics, Aalborg University, Denmark.
  • [7] Geyer, C.J. (1999) Likelihood inference for spatial processes. In O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (eds), Stochastic Geometry, Likelihood and Computation, pp. 79-140. Boca Raton, FL: Chapman and Hall/CRC.
  • [8] Jensen, E.B.V. (1998) Local Stereology, Singapore: World Scientific.
  • [9] Mardia, K.V. (1972) Statistics of Directional Data. London: Academic Press.
  • [10] Meiring, W. (1995) Estimation of heterogeneous space-time covariance. PhD thesis, University of Washington.
  • [11] Möller, J. (1999) Markov chain Monte Carlo and spatial point processes. In O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (eds), Stochastic Geometry, Likelihood and Computation, pp. 141-172. Boca Raton, FL: Chapman and Hall/CRC.
  • [12] Möller, J., Syversveen, A.R. and Waagepetersen, R. (1998) Log Gaussian Cox processes. Scand. J. Statist., 25, 451-482.
  • [13] Monestiez, P., Sampson, P.D. and Guttorp, P. (1993) Modelling of heterogeneous spatial correlation structure by spatial deformation. Cahiers de Geostatistique, 3, 1-12.
  • [14] Nielsen, L.S., Baddeley, A.J. and Jensen, E.B.V. (2000) Estimation in models for inhomogeneous point processes. Research report 12, Laboratory for Computational Stochastics, Department of Mathematical Sciences, University of Aarhus. In preparation.
  • [15] Ogata, Y. and Tanemura, M. (1986) Likelihood estimation of interaction potentials and external fields of inhomogeneous spatial point patterns. In I.S. Francis, B.F.J Manly and F.C. Lam (eds), Proceedings of the Pacï¡c Statistical Congress - 1985, pp. 150-154. Amsterdam: Elsevier.
  • [16] Perrin, O. (1997) Modèle de covariance d'un processus non-stationaire par déformation de l'espace et statistique. Doctoral thesis, Université de Paris I Panthéon-Sorbonne.
  • [17] Rathbun, S.L. (1996) Estimation of poisson intensity using partially observed concomitant variables. Biometrics, 52, 226-242.
  • [18] Ripley, B.D. (1990) Gibbsian interaction models. In D.A. Griffith (ed.), Spatial Statistics: Past, Present and Future, pp. 3-28. New York: Institute of Mathematical Geography, Ann Arbor, MI.
  • [19] Ripley, B.D. and Kelly, F.P. (1977) Markov point processes. J. London Math. Soc., 15, 188-192.
  • [20] Sampson, P.D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc., 87, 108-119.
  • [21] Smith, R.L. (1997) Detecting signals in climatological data. In Bulletin of the International Statistical Institute: Proceedings of the 51st Session (Istanbul), Book 1, pp. 211-214. Voorburg, Netherlands: ISI.
  • [22] Stoyan, D. and Stoyan, H. (1998) Non-homogeneous Gibbs process models for forestry - a case study. Biometrical J., 40, 521-531.
  • [23] Stoyan, D., Kendall, W.S. and Mecke, J. (1995) Stochastic Geometry and Its Applications, 2nd edition. Chichester: Wiley.
  • [24] Strauss, D.J. (1975) A model for clustering. Biometrika, 62, 467-475.