Bernoulli

  • Bernoulli
  • Volume 7, Number 1 (2001), 119-144.

A mixture of the exclusion process and the voter model

Vladimir Belitsky, Pablo A. Ferrari, Mikhail V. Menshikov\2, and Serguei YU. Popov

Full-text: Open access

Abstract

We consider a one-dimensional nearest-neighbour interacting particle system, which is a mixture of the simple exclusion process and the voter model. The state space is taken to be the countable set of the configurations that have a finite number of particles to the right of the origin and a finite number of empty sites to the left of it. We obtain criteria for the ergodicity and some other properties of this system using the method of Lyapunov functions.

Article information

Source
Bernoulli, Volume 7, Number 1 (2001), 119-144.

Dates
First available in Project Euclid: 29 March 2004

Permanent link to this document
https://projecteuclid.org/euclid.bj/1080572342

Mathematical Reviews number (MathSciNet)
MR1811747

Zentralblatt MATH identifier
0978.60105

Keywords
exclusion process Lyapunov function voter model

Citation

Belitsky, Vladimir; Ferrari, Pablo A.; Menshikov\2, Mikhail V.; Popov, Serguei YU. A mixture of the exclusion process and the voter model. Bernoulli 7 (2001), no. 1, 119--144. https://projecteuclid.org/euclid.bj/1080572342


Export citation

References

  • [1] Aspandiiarov, S., Iasnogorodski, R. and Menshikov, M.V. (1996) Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab., 24, 932-960. Abstract can also be found in the ISI/STMA publication
  • [2] Bramson, M., Calderoni, P., De Masi, A., Ferrari, P.A., Lebowitz, J. and Schonmann, R. (1986) Microscopic selection principle for a diffusion-reaction equation. J. Statist. Phys., 45, 905-920.
  • [3] Cammarota, C. and Ferrari, P.A. (1991) Invariance principle for the branching exclusion process. Stochastic Process. Appl., 38, 1-11. Abstract can also be found in the ISI/STMA publication
  • [4] Cox, J.T. and Durrett, R. (1995) Hybrid zones and voter model interfaces. Bernoulli, 1, 343-370. Abstract can also be found in the ISI/STMA publication
  • [5] De Masi, A., Ferrari, P.A. and Lebowitz, J. (1986) Reaction-diffusion equations for interacting particle systems. J. Statist. Phys., 44, 589-644.
  • [6] Derrida, B., Goldstein, S., Lebowitz, J.L. and Speer, E. (1998) Shift equivalence of measures and the intrinsic structure of shocks in the asymmetric simple exclusion process. J. Statist. Phys., 93, 547-571.
  • [7] Durrett, R. (1988) Lecture Notes on Particle Systems and Percolation. Belmont, CA: Wadsworth.
  • [8] Durrett, R. (1995) Ten lectures on particle systems. In P. Bernard (ed.), Lectures on Probability Theory: École d'Éte de Probabilités de Saint Flour XXIII - 1993, Lecture Notes in Math. 1608. New York: Springer-Verlag.
  • [9] Fayolle, G., Malyshev, V.A. and Menshikov, M.V. (1995) Topics in the Constructive Theory of Countable Markov Chains. Cambridge: Cambridge University Press.
  • [10] Ferrari, P.A. (1992) Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields, 91, 81-101. Abstract can also be found in the ISI/STMA publication
  • [11] Ferrari, P.A. (1994) Shocks in one-dimensional processes with drift. In G. Grimmett (ed.), Probability and Phase Transition, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 420, pp. 35-48. Dordrecht: Kluwer Academic.
  • [12] Ferrari, P.A. (1996) Growth processes on a strip. In R. Bamon, J.-M. Gambaudo, S. Martinez (eds), Disordered Systems, Travaux en Cours, 53, pp. 87-111. Paris: Hermann.
  • [13] Ferrari, P.A., Kipnis, C. and Saada, S. (1991) Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab., 19, 226-244. Abstract can also be found in the ISI/STMA publication
  • [14] Liggett, T.M. (1976) Coupling the simple exclusion process. Ann. Probab., 4, 339-356.
  • [15] Liggett, T.M. (1985) Interacting Particle Systems. Berlin: Springer-Verlag.
  • [16] Liggett, T.M. (1999) Stochastic Interacting Systems. Contact, Voter and Exclusion Processes. Berlin: Springer-Verlag. Abstract can also be found in the ISI/STMA publication
  • [17] Machado, F.P. (1998) Asymptotic shape for the branching exclusion process. Markov Process. Related Fields, 4, 535-547. Abstract can also be found in the ISI/STMA publication
  • [18] Malyshev, V.A. (1998) Random grammars. Uspekhi Mat. Nauk 53(2), 107-134 (in Russian). Translated in Russian Math. Surveys, 53(2), 345-370.
  • [19] Menshikov, M.V. and Popov, S.Yu. (1995) Exact power estimates for countable Markov chains. Markov Process. Related Fields, 1, 57-78. Abstract can also be found in the ISI/STMA publication