Bernoulli
- Bernoulli
- Volume 8, Number 6 (2002), 767-785.
A technique for exponential change of measure for Markov processes
Zbigniew Palmowski and Tomasz Rolski
Abstract
We consider a Markov process $X(t)$ with extended generator ${\mathbf{A}}$ and domain $\cal{D}({\mathbf{A}})$. Let $\{{\cal F}_t\}$ be a right-continuous history filtration and ${\mathbb{P}}_t$ denote the restriction of ${\mathbb{P}}$ to ${\cal F}_t$. Let $\tilde{{\mathbb{P}}}$ be another probability measure on $(\Omega,{\cal F})$ such that $\rm d\tilde{{\mathbb{P}}}_t/\rm d{\mathbb{P}}_t=E^h(t)$, where $$ E^h(t)=\frac{h(X(t))}{h(X(0))}\exp \left(-\int_0^t \frac{({\mathbf{A}}h)(X(s))}{h(X(s))}\rm ds \right) $$ is a true martingale for a positive function $h\in\cal{D}({\mathbf{A}})$. We demonstrate that the process $X(t)$ is a Markov process on the probability space $ (\Omega, {\cal F}, \{{\cal F}_t\},\tilde{{\mathbb{P}}}) $, we find its extended generator $\tilde{{\mathbf{A}}}$ and provide sufficient conditions under which $\cal{D}(\tilde{{\mathbf{A}}})=\cal{D}({\mathbf{A}})$. We apply this result to continuous-time Markov chains, to piecewise deterministic Markov processes and to diffusion processes (in this case a special choice of $h$ yields the classical Cameron--Martin--Girsanov theorem).
Article information
Source
Bernoulli, Volume 8, Number 6 (2002), 767-785.
Dates
First available in Project Euclid: 9 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.bj/1076364805
Mathematical Reviews number (MathSciNet)
MR1963661
Zentralblatt MATH identifier
1011.60054
Keywords
Cameron-Martin-Girsanov theorem diffusion process exponential change of measure extended generator local martingale Markov additive process Markov process piecewise deterministic Markov process
Citation
Palmowski, Zbigniew; Rolski, Tomasz. A technique for exponential change of measure for Markov processes. Bernoulli 8 (2002), no. 6, 767--785. https://projecteuclid.org/euclid.bj/1076364805