Bulletin of the Belgian Mathematical Society - Simon Stevin

Existence and multiplicity of periodic solutions for some second order Hamiltonian systems

Yiwei Ye and Chun-Lei Tang

Full-text: Open access

Abstract

In this paper, we study the existence of nontrivial periodic solutions for the second order Hamiltonian systems $ \ddot u(t)+\nabla F(t,u(t))=0$, where $F(t,x)$ is either nonquadratic or superquadratic as $|u|\mathbb{R}ightarrow \infty$. Furthermore, if $F(t,x)$ is even in $x$, we prove the existence of infinitely many periodic solutions for the general Hamiltonian systems $ \ddot u(t)+A(t)u(t)+\nabla F(t,u(t))=0$, where $A(\cdot)$ is a continuous $T$-periodic symmetric matrix. Our theorems mainly improve the recent result of Tang and Jiang [X.H. Tang, J. Jiang, Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems, Comput. Math. Appl. 59 (2010) 3646-3655].

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 21, Number 4 (2014), 613-633.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1414091006

Digital Object Identifier
doi:10.36045/bbms/1414091006

Mathematical Reviews number (MathSciNet)
MR3271324

Zentralblatt MATH identifier
1316.34046

Subjects
Primary: 34C25: Periodic solutions 34A34: Nonlinear equations and systems, general 37J45: Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods

Keywords
Second-order Hamiltonian systems Periodic solutions Mountain pass theorem Fountain Theorem

Citation

Ye, Yiwei; Tang, Chun-Lei. Existence and multiplicity of periodic solutions for some second order Hamiltonian systems. Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 4, 613--633. doi:10.36045/bbms/1414091006. https://projecteuclid.org/euclid.bbms/1414091006


Export citation