Bulletin of the Belgian Mathematical Society - Simon Stevin
- Bull. Belg. Math. Soc. Simon Stevin
- Volume 16, Number 5 (2009), 887-906.
Computing multi-point Seshadri constants on ${\bf P}^2$
Brian Harbourne and Joaquim Roé
Abstract
We describe an approach for computing arbitrarily accurate estimates for multi-point Seshadri constants for $n$ generic points of ${\bf P}^{2}$. We apply the approach to obtain improved estimates. We work over an algebraically closed field of characteristic 0.
Article information
Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 5 (2009), 887-906.
Dates
First available in Project Euclid: 9 December 2009
Permanent link to this document
https://projecteuclid.org/euclid.bbms/1260369405
Digital Object Identifier
doi:10.36045/bbms/1260369405
Mathematical Reviews number (MathSciNet)
MR2574368
Zentralblatt MATH identifier
1185.14005
Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves
Secondary: 14J99: None of the above, but in this section
Keywords
Multi-point Seshadri constants projective plane
Citation
Harbourne, Brian; Roé, Joaquim. Computing multi-point Seshadri constants on ${\bf P}^2$. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 5, 887--906. doi:10.36045/bbms/1260369405. https://projecteuclid.org/euclid.bbms/1260369405