Bulletin of the Belgian Mathematical Society - Simon Stevin

Computing multi-point Seshadri constants on ${\bf P}^2$

Brian Harbourne and Joaquim Roé

Full-text: Open access

Abstract

We describe an approach for computing arbitrarily accurate estimates for multi-point Seshadri constants for $n$ generic points of ${\bf P}^{2}$. We apply the approach to obtain improved estimates. We work over an algebraically closed field of characteristic 0.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 5 (2009), 887-906.

Dates
First available in Project Euclid: 9 December 2009

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1260369405

Digital Object Identifier
doi:10.36045/bbms/1260369405

Mathematical Reviews number (MathSciNet)
MR2574368

Zentralblatt MATH identifier
1185.14005

Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves
Secondary: 14J99: None of the above, but in this section

Keywords
Multi-point Seshadri constants projective plane

Citation

Harbourne, Brian; Roé, Joaquim. Computing multi-point Seshadri constants on ${\bf P}^2$. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 5, 887--906. doi:10.36045/bbms/1260369405. https://projecteuclid.org/euclid.bbms/1260369405


Export citation