Open Access
September 2007 Non-isomorphism of some algebras of holomorphic functions
M. Nawrocki
Bull. Belg. Math. Soc. Simon Stevin 14(3): 539-544 (September 2007). DOI: 10.36045/bbms/1190994216

Abstract

Suppose that $\mathcal X$ is a family of spaces of holomorphic functions such that each $X=X(D) \in \mathcal X$ can be defined on a domain $D$ belonging to some class $\mathcal D$ of domains. Then for any two concrete domains $D_1$ and $D_2 \in \mathcal D$ and $X \in \mathcal X$ one can ask the following natural question if corresponding spaces $X(D_1)$ and $X(D_2)$ are isomorphic as topological vector spaces. Similarly, for a fixed $D \in \mathcal D$ and two different spaces $X_1, X_2 \in \mathcal X$ one can consider the existence of an isomorphism between $X_1(D)$ and $X_2(D)$. We answer these questions when $\mathcal X$ consists of Hardy $N^p_*(D)$, maximal Hardy $MN^p_*(D)$, Bergman ${\mathbb N}^p(D)$, and Lumer's Hardy $LN^p_*(D)$ algebras, $p \geq 1$, and $\mathcal D = \{\mathbb B_n, \mathbb U^n, n \in \mathbb N\}$ is the family of the unit balls and the unit polydiscs in ${C}^n$.

Citation

Download Citation

M. Nawrocki. "Non-isomorphism of some algebras of holomorphic functions." Bull. Belg. Math. Soc. Simon Stevin 14 (3) 539 - 544, September 2007. https://doi.org/10.36045/bbms/1190994216

Information

Published: September 2007
First available in Project Euclid: 28 September 2007

zbMATH: 1131.32002
MathSciNet: MR2387052
Digital Object Identifier: 10.36045/bbms/1190994216

Subjects:
Primary: 32A22 , 32A35‎ , 46A06
Secondary: 32A05 , 46A12

Keywords: Bergman algebra , Fréchet envelope , Hardy algebra , Nevanlinna class , nuclear power series spaces , Smirnov class

Rights: Copyright © 2007 The Belgian Mathematical Society

Vol.14 • No. 3 • September 2007
Back to Top