Bulletin of the Belgian Mathematical Society - Simon Stevin

Analysis of a viscoelastic contact problem with Normal damped response and damage

L. Selmani and M. Selmani

Full-text: Open access

Abstract

We consider a mathematical model for the process of contact between a viscoelastic body and a reactive foundation. The material is viscoelastic with internal state variable which may describe the damage of the system. We establish a variational formulation for the model and prove the existence and uniqueness result of the weak solution. Finally we prove a dependence result with respect to the data.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 13, Number 2 (2006), 209-220.

Dates
First available in Project Euclid: 19 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1148059457

Digital Object Identifier
doi:10.36045/bbms/1148059457

Mathematical Reviews number (MathSciNet)
MR2259901

Zentralblatt MATH identifier
1129.74034

Subjects
Primary: 74M15: Contact 74R99: None of the above, but in this section 74D10: Nonlinear constitutive equations

Keywords
Quasistatic process nonlinear viscoelastic constitutive law normal damped response internal state variable damage

Citation

Selmani, L.; Selmani, M. Analysis of a viscoelastic contact problem with Normal damped response and damage. Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 209--220. doi:10.36045/bbms/1148059457. https://projecteuclid.org/euclid.bbms/1148059457


Export citation