Bulletin (New Series) of the American Mathematical Society

Geometric and differential properties of subanalytic sets

Edward Bierstone and Pierre D. Milman

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 25, Number 2 (1991), 385-393.

Dates
First available in Project Euclid: 5 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183657187

Mathematical Reviews number (MathSciNet)
MR1102751

Zentralblatt MATH identifier
0739.32010

Subjects
Primary: 32B20: Semi-analytic sets and subanalytic sets [See also 14P15] 58C27
Secondary: 32C42 32K15: Differentiable functions on analytic spaces, differentiable spaces [See also 58C25]

Citation

Bierstone, Edward; Milman, Pierre D. Geometric and differential properties of subanalytic sets. Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 385--393. https://projecteuclid.org/euclid.bams/1183657187


Export citation

References

  • 1. J. Becker and W. R. Zame, Applications of functional analysis to the solution of power series equations, Math. Ann. 243 (1979), 37-54.
  • 2. E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. 116 (1982), 541-558.
  • 3. E. Bierstone and P. D. Milman, The Newton diagram of an analytic morphism, and applications to differentiable functions, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 315-318.
  • 4. E. Bierstone and P. D. Milman, Relations among analytic functions I, II, Ann. Inst. Fourier (Grenoble) 37 (1) (1987), 187-239; and 37 (2) (1987), 49-77.
  • 5. E. Bierstone and P. D. Milman, Local analytic invariants and splitting theorems in differential analysis, Israel J. Math. 60 (1987), 257-280.
  • 6. E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Etudes Sci. Publ. Math. 67 (1988), 5-42.
  • 7. A. M. Gabrielov, Formal relations between analytic functions, Functional Anal. Appl. 5 (1971), 318-319.
  • 8. A. M. Gabrielov, Formal relations between analytic functions, USSR Izv. 7 (1973), 1056-1088.
  • 9. M. Galbiati, Stratifications et ensemble de non-cohérence d'un espace analytique réel, Invent. Math. 34 (1976), 113-128.
  • 10. G. Glaeser, Fonctions composées différentiables, Ann. of Math. 77 (1963), 193-209.
  • 11. H. Hironaka, Local analytic dimensions of a subanalytic set, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 73-75.
  • 12. S. Izumi, Gabrielov's rank condition is equivalent to an inequality of reduced orders, Math. Ann. 276 (1986), 81-89.
  • 13. J. Merrien, Faisceaux analytiques semi-cohérents, Ann. Inst. Fourier (Grenoble) 30 (1980), 165-219.
  • 14. P. D. Milman, Analytic and polynomial homomorphisms of analytic rings, Math. Ann. 232 (1978), 247-253.
  • 15. W. Pawłucki, On relations among analytic functions and geometry of sub-analytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), 117-125.