Bulletin (New Series) of the American Mathematical Society

Hypergeometric functions on complex matrix space

Kenneth I. Gross and Donald St. P. Richards

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 24, Number 2 (1991), 349-355.

Dates
First available in Project Euclid: 5 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183656874

Mathematical Reviews number (MathSciNet)
MR1071029

Zentralblatt MATH identifier
0731.33015

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 33A75 43A85: Analysis on homogeneous spaces 62H10: Distribution of statistics
Secondary: 20G20: Linear algebraic groups over the reals, the complexes, the quaternions 32A07: Special domains (Reinhardt, Hartogs, circular, tube) 44A10: Laplace transform 62E15: Exact distribution theory

Citation

Gross, Kenneth I.; Richards, Donald St. P. Hypergeometric functions on complex matrix space. Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 349--355. https://projecteuclid.org/euclid.bams/1183656874


Export citation

References

  • 1. H. Ding, Operator-valued Bessel functions on Schrödinger-Fock spaces and Siegel domains of type. II, preprint.
  • 2. H. Ding, Operator-valued Bessel functions on Schrödinger-Fock spaces and Siegel domains of type II: holomorphic discrete series and harmonic representations (in preparation).
  • 3. H. Ding and K. I. Gross, Operator-valued Bessel functions on symmetric cones and holomorphic discrete series (in preparation).
  • 4. J. Faraut and A. Korányi, Fonctions hypergéometriques associées aux cônes symétriques, C. R. Acad. Sci. Paris Sér. I 307 (1988), 555-558.
  • 5. K. I. Gross and R. A. Kunze, Generalized Fourier-Bessel transforms and holomorphic discrete series, Proc. Internat. Conf. in Harmonic Analysis, Lecture Notes in Math., vol. 261, Springer-Verlag, Berlin and New York, 1973, pp. 79-122.
  • 6. K. I. Gross and D. St. P. Richards, Special functions of matrix argument, I: Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), 781-811.
  • 7. K. I. Gross and D. St. P. Richards, Total positivity, spherical series, and hypergeometric functions of matrix argument, J. Approximation Theory 59 (1989), 224-246.
  • 8. K. I. Gross and D. St. P. Richards, Special functions of matrix argument, II: The fine structure of hypergeometric functions on complex matrix space (in preparation).
  • 9. A. T. James, Distributions of matrix variates and latent roots derived from normal samples, Ann. of Math. Statistics 35 (1964), 475-501.
  • 10. A. Korányi, Hua-type integrals, hypergeometric functions, and symmetric polynomials, preprint.
  • 11. D. St. P. Richards, Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series, Linear Algebra Appl. 137/138 (1990), 467-478.
  • 12. H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1939.