Bulletin (New Series) of the American Mathematical Society

Absolute integral closures are big Cohen-Macaulay algebras in characteristic $P$

Melvin Hochster and Craig Huneke

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 24, Number 1 (1991), 137-143.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183556250

Mathematical Reviews number (MathSciNet)
MR1056558

Zentralblatt MATH identifier
0729.13012

Subjects
Primary: 13B20 13H99: None of the above, but in this section 13C99: None of the above, but in this section

Citation

Hochster, Melvin; Huneke, Craig. Absolute integral closures are big Cohen-Macaulay algebras in characteristic $P$. Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 1, 137--143. https://projecteuclid.org/euclid.bams/1183556250


Export citation

References

  • [Ar] M. Artin, On the joins of Hensel rings, Adv. Math. 7 (1971), 282-296.
  • [Bou] J.-F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65-68.
  • [Fal] G. Faltings, A contribution to the theory of formal meromorphic functions, Nagoya Math. J. 77 (1980), 99-106.
  • [Ho1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43.
  • [Ho2] M. Hochster, Topics in the homological theory of modules over commutative rings, CBMS Regional Conf. Ser. in Math., no. 24, Amer. Math. Soc. Providence, R.I., 1975.
  • [HH1] M. Hochster and C. Huneke, Tight closure, Commutative Algebra, M.S.R. I. Publ., no. 15, Springer-Verlag, New York, 1989, pp. 305-324.
  • [HH2] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Mém. Soc. Math, de France numéro consacré au colloque en l'honneur de P. Samuel, Mémoire n° 38 (1989), 119-133.
  • [HH3] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.
  • [HH4] M. Hochster and C. Huneke, Phantom homology, preprint.
  • [HH5] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change (in preparation).
  • [HH6] M. Hochster and C. Huneke, Tight closures of parameter ideals and splitting in module-finite extensions (in preparation).
  • [HH7] M. Hochster and C. Huneke, Tight closure in characteristic zero (in preparation).
  • [HH8] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, preprint.
  • [HH9] M. Hochster and C. Huneke, Applications of the Cohen-Macaulay property for absolute integral closures (in preparation).
  • [HR] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math. 13 (1974), 115-175.
  • [Ma] F. Ma, Splitting in integral extensions, Cohen-Macaulay modules and algebras, J. Algebra 116 (1988) 176-195.
  • [Ro] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. 9 (1976), 103-106.