Bulletin (New Series) of the American Mathematical Society

Notes on invariant subspaces

Hari Bercovici

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 23, Number 1 (1990), 1-36.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47A15: Invariant subspaces [See also 47A46] 47A45: Canonical models for contractions and nonselfadjoint operators


Bercovici, Hari. Notes on invariant subspaces. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 1--36. https://projecteuclid.org/euclid.bams/1183555716

Export citation


  • 1. C. Apostol, Ultraweakly closed operator algebras, J. Operator Theory 2 (1979), 49-61.
  • 2. H. Bercovici, A contribution to the theory of operators in the class A, J. Funct. Anal. 78 (1988), 197-207.
  • 3. H. Bercovici, Factorization theorems for integrable functions, Analysis at Urbana, II, (E. R. Berkson, et al., eds.), Cambridge University Press, 1988.
  • 4. H. Bercovici, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math. (2) 128 (1988), 399-413.
  • 5. H. Bercovici, C. Foiaş and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., No. 56, Amer. Math. Soc., Providence, R.I., 1985.
  • 6. L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183.
  • 7. S. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), 310-333.
  • 8. S. Brown, Contractions with spectral boundary, Integral Equations Operator Theory 11 (1988), 49-63.
  • 9. S. Brown, B. Chevreau and C. Pearcy, Contractions with rich spectrum have invariant subspaces, J. Operator Theory 1 (1979), 123-136.
  • 10. S. Brown, B. Chevreau and C. Pearcy, On the structure of contraction operators. II, J. Funct. Anal. 76 (1988), 30-55.
  • 11. B. Chevreau, Sur les contractions à calcul fonctionnel isométrique. II, J. Operator Theory (to appear).
  • 12. B. Chevreau and C. Pearcy, On the structure of contraction operators. I, J. Funct. Anal. 76 (1988), 1-29.
  • 13. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
  • 14. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, 1962.
  • 15. L. Rubel and A. Shields, The space of bounded analytic fuńctions on a region, Ann. Inst. Fourier (Grenoble) 16 (1966), 235-277.
  • 16. B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
  • 17. J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3(1952), 270-277.