Bulletin (New Series) of the American Mathematical Society

The classification of nonlinear similarities over ${\text{Z}}_{2^r }$

Sylvain E. Cappell, Julius L. Shaneson, Mark Steinberger, Shmuel Weinberger, and James E. West

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 22, Number 1 (1990), 51-57.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555453

Mathematical Reviews number (MathSciNet)
MR1003861

Zentralblatt MATH identifier
0697.57018

Subjects
Primary: 57S17: Finite transformation groups 57S25: Groups acting on specific manifolds 57N17: Topology of topological vector spaces
Secondary: 20C99: None of the above, but in this section 58F10 58F19

Citation

Cappell, Sylvain E.; Shaneson, Julius L.; Steinberger, Mark; Weinberger, Shmuel; West, James E. The classification of nonlinear similarities over ${\text{Z}}_{2^r }$. Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 51--57. https://projecteuclid.org/euclid.bams/1183555453


Export citation

References

  • [CS1] S. E. Cappell and J. L. Shaneson, Non-linear similarity, Ann. of Math. (2) 113(1981), 315-355.
  • [CS2] S. E. Cappell and J. L. Shaneson, Non-linear similarity and linear similarity are equivalent below dimension six(to appear).
  • [CS3] S. E. Cappell and J. L. Shaneson, Torsion in L-groups, Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin and New York, 1985, pp. 22-50.
  • [CS4] S. E. Cappell and J. L. Shaneson, The topological rationality of linear representations, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 309-336.
  • [CS5] S. E. Cappell and J. L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 1-19.
  • [CS6] S. E. Cappell and J. L. Shaneson, Determinants of ε-symmetric forms over Z[Z2r] (to appear).
  • [CSSW] S. E. Cappell, J. L. Shaneson, M. Steinberger and J. E. West, Non-linear similarity begins in dimension six, Amer. J. Math., 1989 (to appear).
  • [CSW] S. E. Cappell, J. L. Shaneson and S. Weinberger, A topological equivariant signature theorem for singular varieties (to appear).
  • [dR] G. de Rham, Moscow Topology Conference, 1934.
  • [HP] W.-C. Hsiang and W. Pardon, When are topologically equivalent orthogonal transformations linearly equivalent? Invent. Math. 68 (1982), 275-316.
  • [MR] I. Madsen and M. Rothenberg, On the classification of G-spheres. I—III, preprints.
  • [MRS] I. Madsen, M. Rothenberg, and M. Steinberger, Locally linear G-surgery (to appear).
  • [Mi] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358-426.
  • [M] W. Mio, Thesis, NYU.
  • [RoseW] J. Rosenberg and S. Weinberger, Higher G-indices of smooth and Lipschitz manifolds and their applications, (to appear).
  • [RothW] J. Rosenberg and S. Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 109-112.
  • [Sch] R. Schultz, On the topological classification of linear representations, Topology 16 (1977), 263-270.
  • [S] M. Steinberger, The equivariant topological s-cobordism theorem, Invent. Math. 91 (1988), 61-104.
  • [SW1] M. Steinberger and J. E. West, Approximation by equivariant homeomorphisms. I, Trans. Amer. Math. Soc. 301 (1987), 1-21.
  • [SW2] M. Steinberger and J. E. West, Controlled finiteness is the obstruction to equivariant handle decomposition (to appear).
  • [W] C. T. C. Wall, Classification of Hermitian forms: VI Group rings, Ann. of Math. (2) 103(1976), 1-80.