Bulletin (New Series) of the American Mathematical Society

Globalizations of Harish-Chandra modules

Wilfried Schmid and Joseph A. Wolf

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 17, Number 1 (1987), 117-120.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183553967

Mathematical Reviews number (MathSciNet)
MR888885

Zentralblatt MATH identifier
0649.22010

Subjects
Primary: 22E46: Semisimple Lie groups and their representations 22E47: Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [See also 17B10]
Secondary: 32M10: Homogeneous complex manifolds [See also 14M17, 57T15]

Citation

Schmid, Wilfried; Wolf, Joseph A. Globalizations of Harish-Chandra modules. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 117--120. https://projecteuclid.org/euclid.bams/1183553967


Export citation

References

  • 1. R. Aguilar-Rodriguez, Connections between representations of Lie groups and sheaf cohomology, Thesis, Harvard Univ., 1987.
  • 2. A. Beilinson and J. Bernstein, A generalization of Casselman's submodule theorem, Representation Theory of Reductive Groups, Progress in Math., vol. 40, Birkhäuser, Boston, 1983, pp. 35-52.
  • 3. H. Hecht, D. Miličić, W. Schmid and J. A. Wolf, Localization and standard modules for real semisimple Lie groups, I: The Duality Theorem (to appear).
  • 4. H. Hecht, D. Miličić, W. Schmid and J. A. Wolf, Localization and standard modules for real semisimple Lie groups. II: Applications (to appear).
  • 5. W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Ph.D. thesis, Berkeley, 1967.
  • 6. H. Hecht, D. Miličić, W. Schmid and J. A. Wolf, L2 cohomology and the discrete series, Ann. of Math. (2) 103 (1976), 375-394.
  • 7. H. Hecht, D. Miličić, W. Schmid and J. A. Wolf, Boundary value problems for group invariant differential equations, Proc. Cartan Symposium (Lyon, 1984), Asterix 1985, pp. 311-322.
  • 8. D. Vogan, Representations of real reductive Lie groups, Progress in Math., vol. 15, Birkhäuser, Boston, 1981.
  • 9. J. A. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. vol. 138, Amer. Math. Soc. Providence, R.I., 1974.
  • 10. G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), 295-308.