Bulletin (New Series) of the American Mathematical Society

Review: M. C. Fitting, Fundamentals of generalized recursion theory

G. Kreisel

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 13, Number 2 (1985), 182-197.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183552705

Citation

Kreisel, G. Review: M. C. Fitting, Fundamentals of generalized recursion theory. Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 182--197. https://projecteuclid.org/euclid.bams/1183552705


Export citation

References

  • [ABH] S. I. Adian, W. W. Boone and G. Higman (eds.), Word problems II, North-Holland, 1980.
  • [B] A. Baker, Recent advances in transcendence theory, Trudy Math. Inst. Steklov 132 (1973), 67-69.
  • [BD] A. Baker and H. Davenport, The equations 3x³ - 2 = y² and 8x² - 7 = z², Quarterly J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  • [B1] J. Barwise (ed.), Syntax and semantics of infinitary languages, Lecture Notes, vol. 72, Springer-Verlag, 1968.
  • [B2] J. Barwise (ed.), Handbook of mathematical logic, North-Hollaǹd, 1977.
  • [Bi] E. Bishop, Foundations of constructive analysis, McGraw-Hill, 1967.
  • [BV] E. Bombieri and J. Vaalen, On Siegel's Lemma, Invent. Math. 73 (1983), 11-32, addendum 75 (1984), 377.
  • [Ca] G. Cantor, Gesammelte Abhandlungen (E. Zermelo, ed.), Springer-Verlag, 1932.
  • [C1] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193-291.
  • [C2] J. W. S. Cassels, Review of: Introduction to Number Theory by Hua Loo Keng (translated by Peter Shiu), Math. Intelligencer 5 no 2 (1983), 57.
  • [DLS] D. van Dalen, D. Lascar and T. J. Smiley (eds.), Logic Colloquium '80, North-Holland, 1983.
  • [E] J. L. Ersov, Theorie der Numerierungen II, III, Z. Math. Logik Grundlag. Math. 21 (1975) 473-584; und 23 (1977), 289-371.
  • [GY] R. O. Gandy and C. E. M. Yates (eds.), Logic Colloquium '69, North-Holland, 1971.
  • [G1] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Mh. Math. Physik 38 (1931), 173-198.
  • [G2] K. Gödel, The consistency of the continuum hypothesis, Ann. Math. Studies no. 3, 1940.
  • [H] G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A 262 (1961), 455-475.
  • [HB] D. Hilbert and P. Bernays, Grundlagen der Mathematik, vol. 2, Springer-Verlag, Berlin and New York, 1970.
  • [HS] L. Harrington and S. Shelah, The undecidability of the recursively enumerable degrees, Bull. Amer. Math. Soc. (N.S). 6 (1982), 79-80.
  • [J] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. of Math. Logic 4 (1972), 229-308.
  • [K1] S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc. 61 (1955), 193-213; reviewed MR 17 (1956), 4.
  • [K2] S. C. Kleene, Recursive functional and quantifiers of finite type, Trans. Amer. Math. Soc. 91 (1959), 1-52.
  • [Kn] W. Knorr, La croix des mathématiciens, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 41-69.
  • [Kr] G. Kreisel, Mathematical logic: tool and object lesson for science, Synthese 62 (1985), 139-152.
  • [LM] G. Longo and E. Moggi, The hereditary partial effective functional and recursion theory in higher types, J. Symbolic Logic 49 (1984), 1319-1332.
  • [M] D. A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), 363-371.
  • [PR] M. B. Pour-El and I. Richards, The wave equation with computable initial data such that its unique solution is not computable, Advances in Math. 39 (1981), 215-239; reviewed J. Symbolic Logic 47 (1982), 900-902.
  • [S] T. L. Saaty (ed.), Lectures on modern mathematics. III, Wiley, New York, 1965.
  • [Sh] J. R. Shoenfield, Degrees of undecidability, North-Holland, 1971.
  • [Sho] R. A. Shore, The theory of the degrees below 0', J. London Math. Soc. (2) 24 (1981), 1-14.
  • [Si] W. Sierpiński, Le dernier théorème de Fermat pour les nombres ordinaux, Fund. Math. 37 (1950), 201-205.
  • [Sm] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 1-36.
  • [Y] C. E. M. Yates, Prioric games and minimal degrees below 0', Fund. Math. 82 (1974), 217-237.
  • [Z] K. Zuse, Der Computer―mein Lebenswerk, Verlag für moderne Industrie, Munich, 1970.