Bulletin (New Series) of the American Mathematical Society

Irreducible representations of infinite-dimensional transformation groups and Lie algebras

Paul R. Chernoff

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 13, Number 1 (1985), 46-48.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183552620

Mathematical Reviews number (MathSciNet)
MR788389

Zentralblatt MATH identifier
0578.58022

Subjects
Primary: 22A25: Representations of general topological groups and semigroups 22E65: Infinite-dimensional Lie groups and their Lie algebras: general properties [See also 17B65, 58B25, 58H05] 58F06
Secondary: 81C40

Citation

Chernoff, Paul R. Irreducible representations of infinite-dimensional transformation groups and Lie algebras. Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 46--48. https://projecteuclid.org/euclid.bams/1183552620


Export citation

References

  • 1. A. Avez, Symplectic group, quantum mechanics and Anosov's systems, Dynamical Systems and Microphysics, (A. Blaquiere et al., eds.), Springer-Verlag, 1980, pp. 301-324.
  • 2. W. S. Burnside, Theory of groups of finite order, 2nd edition, 1911), Dover, New York, reprint 1955, p. 249.
  • 3. P. R. Chernoff, Irreducible representations of infinite dimensional Lie algebras and groups, Abstracts Amer. Math. Soc. 2 (1981), 540; Abstract 81 T-22-528.
  • 4. G. W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576-592.
  • 5. B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Applications. III, (C. T. Tamm, ed.), Lecture Notes in Math., vol. 170, Springer-Verlag, 1979, pp. 87-208.
  • 6. I. E. Segal, Quantization of non-linear systems, J. Math. Phys. 1 (1960), 468-488.
  • 7. J. M. Souriau, Quantification géométrique, Comm. Math. Phys. 1 (1966), 374-398.
  • 8. R. W. Urwin, The prequantization representations of the Poisson Lie algebra, Adv. in Math. 50 (1983), 126-154.
  • 9. L. van Hove, Sur certaines représentations unitaires d'un groupe infini de transformations, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8° (2) 29 (1951), 1-102.
  • 10. A. M. Vershik, I. M. Gel'fand, and M. I. Graev, Representations of the group of diffeomorphisms, Uspekhi Mat. Nauk 30 (1975), 1-50 = Russian Math. Surveys 30 (1975), 3-50.