Bulletin (New Series) of the American Mathematical Society

Unipotent and prounipotent groups: cohomology and presentations

Alexander Lubotzky and Andy R. Magid

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 7, Number 1 (1982), 251-254.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14L25 20G10: Cohomology theory


Lubotzky, Alexander; Magid, Andy R. Unipotent and prounipotent groups: cohomology and presentations. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 251--254. https://projecteuclid.org/euclid.bams/1183549056

Export citation


  • 1. N. Bourbaki, Lie groups and Lie algebras. I, Addison-Wesley, Reading, Mass., 1975.
  • 2. G. Hochschild, Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961), 492-579.
  • 3. G. Hochschild and G. D. Mostow, Pro-affine algebraic groups, Amer. J. Math. 91 (1964), 1127-1140.
  • 4. A. Lubotzky, Tannaka duality for discrete groups, Amer. J. Math. 102 (1980), 663-689.
  • 5. A. Lubotzky and A. Magid, Cohomology of unipotent and prounipotent groups, J. Algebra 74 (1982), 76-95.
  • 6. A. Lubotzky and A. Magid, Free prounipotent groups (preprint).
  • 7. A. Lubotzky and A. Magid, The group algebra of a prounipotent group (preprint).
  • 8. R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1960), 650-665.
  • 9. A. Magid, Module categories of analytic groups, Cambridge Univ. Press, London and New York (to appear).
  • 10. G. D. Mostow, Representative functions on discrete groups and solvable arithmetic groups, Amer. J. Math. 92 (1970), 1-32.
  • 11. J. P. Serre, Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin and New York, 1965.