Bulletin (New Series) of the American Mathematical Society

Review: William S. Massey, Homology and cohomology theory

John H. Ewing

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 1, Number 6 (1979), 985-989.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183544915

Citation

Ewing, John H. Review: William S. Massey, Homology and cohomology theory. Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 985--989. https://projecteuclid.org/euclid.bams/1183544915


Export citation

References

  • 1. J. W. Alexander, A proof and extension of the Jordan-Brouwer separation theorem, Trans. Amer. Math. Soc. 23 (1922), 333-349.
  • 2. J. W. Alexander, Combinatorial analysis situs, Trans. Amer. Math. Soc. 28 (1926), 301-329.
  • 3. J. W. Alexander, On the chains of a complex and their duals, Proc. Nat. Acad. Sci. U.S.A. 21 (1935), 509-511.
  • 4. J. W. Alexander and O. Veblen, Manifolds of n dimensions, Ann. of Math. (2) 14 (1913), 163-178.
  • 5. P. Alexandroff, Untersuchungen über Gestalt und Lage abgescholossener Mengen beliebiger Dimension, Ann. of Math. (2) 30 (1928), 101-187.
  • 6. E. Čech, Théorie générale de l'homologie dans un espace quelconque, Fund. Math. 19 (1932), 149-183.
  • 7. E. Čech, Les groupes de Betti d'une complexe infini, Fund. Math. 25 (1935), 33-44.
  • 8. S. Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407-447.
  • 9. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, N. J., 1952.
  • 10. S. Lefschetz, Topology, Amer. Math. Soc. Colloq. Publ. no. 12, New York, 1930.
  • 11. S. Lefschetz, On singular chains and cycles, Bull. Amer. Math. Soc. 39 (1933), 124-129.
  • 12. W. S. Massey, How to give an exposition of Čech-Alexander-Spanier type homology theory, Amer. Math. Monthly 85 (1978), 75-83.
  • 13. H. Poincaré, Analysis situs, J. École Polytech. 1 (1895), 1-121.
  • 14. L. Pontrjagin, Über den algebaischen Inhalt topologischer Duälitätssatze, Math. Ann. 105 (1931), 165-205.
  • 15. E. H. Spanier, Cohomology theory for general spaces, Ann. of Math. (2) 49 (1948), 407-427.
  • 16. H. Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Mh. Math. Phys. 19 (1908), 1-118.
  • 17. O. Veblen, Analysis situs, Amer. Math. Soc. Colloq. Publ. no. 5, Part II, New York, 1922.
  • 18. L. Vietoris, Über die höheren Zusammenhang Kompakter Räume und eine Klasse von Zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), 454-472.
  • 19. H. Whitney, On products in a complex, Ann. of Math. (2) 39 (1938), 397-432.