Bulletin (New Series) of the American Mathematical Society

Ends of maps and applications

Frank Quinn

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 1, Number 1 (1979), 270-272.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57A99 54C55: Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties) [See also 55M15] 57B05


Quinn, Frank. Ends of maps and applications. Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 1, 270--272. https://projecteuclid.org/euclid.bams/1183542353

Export citation


  • 1. W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028. MR 32 #6473.
  • 2. J. L. Bryant and C. L. Seebeck, III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265-272. MR 44 #7560.
  • 3. J. W. Cannon, Taming codimension-one generalized submanifolds of Sn, Topology 16 (1977), 323-334.
  • 4. J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, 1978 (preprint)
  • 5. E. H. Connell and John Hollingsworth, Geometric groups and Whitehead torsion, Trans. Amer. Math. Soc. 140 (1969), 161-181.
  • 6. D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
  • 7. R. D. Edwards, Stebenmann's variation of West's proof of the ANR theorem (to appear).
  • 8. R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, 1977. (preprint)
  • 9. Steve Ferry, Homotoping є-maps to homeomorphisms, Institute for Advanced Study, 1977 (preprint).
  • 10. R. E. Goad, Local homotopy properties of maps, and approximation by fiber bundle projections, Thesis, Univ. of Georgia, 1976.
  • 11. F. Quinn, Ends of maps, and applications, Virginia Polytechnic Institute and State University, 1978 (preprint).
  • 12. L. C. Siebenmann, Obstructions to finding a boundary for an open manifold, Thesis, Princeton Univ., 1965.