Bulletin of the American Mathematical Society

Two proofs of the stable Adams conjecture

Eric M. Friedlander and R. M. Seymour

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 6 (1977), 1300-1302.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183539858

Mathematical Reviews number (MathSciNet)
MR0448352

Zentralblatt MATH identifier
0387.55007

Subjects
Primary: 55B15 55F50

Citation

Friedlander, Eric M.; Seymour, R. M. Two proofs of the stable Adams conjecture. Bull. Amer. Math. Soc. 83 (1977), no. 6, 1300--1302. https://projecteuclid.org/euclid.bams/1183539858


Export citation

References

  • 1. A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
  • 2. E. M. Friedlander, Stable Adams conjecture via representability theorems for Г-spaces (to appear).
  • 3. G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 50 #5782.
  • 4. R. M. Seymour, Vector bundles invariant under the Adams operations, Quart. J, Math. Oxford Ser. (2) 25 (1974), 395-414.
  • 5. R. M. Seymour, A local representation of Ψq (to appear).
  • 6. R. M. Seymour, The infinite loop Adams conjecture (to appear).
  • 7. V. Snaith, The complex J-homomorphism, Proc. London Math. Soc. (3) 34 (1977), 269-302.
  • 8. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1-79.