Bulletin of the American Mathematical Society

Two-point Padé tables and $T$-fractions

William B. Jones and W. J. Thron

Full-text: Open access

Article information

Bull. Amer. Math. Soc., Volume 83, Number 3 (1977), 388-390.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30A22 41A20: Approximation by rational functions 65D05: Interpolation
Secondary: 41A05: Interpolation [See also 42A15 and 65D05]


Jones, William B.; Thron, W. J. Two-point Padé tables and $T$-fractions. Bull. Amer. Math. Soc. 83 (1977), no. 3, 388--390. https://projecteuclid.org/euclid.bams/1183538802

Export citation


  • 1. George A. Baker, Jr., G. S. Rushbrooke and H. E. Gilbert, High-temperature series expansions for the spin-1/2 Heisenberg model by the method of irreducible representations of the symmetric group, Phys. Rev. 135 (1964), 1272-1277.
  • 2. Michael A. Gallucci and William B. Jones, Rational approximations corresponding to Newton Series (Newton-Padé approximants), J. Approximation Theory 17 (1976), 336-392.
  • 3. W. B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972), 1-62. MR 46 #4693.
  • 4. Thomas H. Jefferson, Jr., Some additional properties of T-fractions, Ph. D. Thesis, Univ. of Colorado, Boulder, Colorado, 1969.
  • 5. O. Perron, Die Lehre von den Kettenbrüchen. Band II, 3rd enlarged and rev. ed., Teubner, Stuttgart, 1957. MR 19, 25.
  • 6. P. Sheng and J. D. Dow, Intermediate coupling theory: Padé approximants for polarons, Phys. Rev. B4 (1971), 1343-1359.
  • 7. W. J. Thron, Some properties of continued fractions 1 + d0z + K (z/(1 + dnz)), Bull. Amer. Math. Soc. 54 (1948), 206-218. MR 9, 508.
  • 8. Haakon Waadeland, On T-fractions of certain functions with a first order pole at the point of infinity, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 1-6. MR 38 #2289.