Bulletin of the American Mathematical Society

The holomorphic Lefschetz formula

Domingo Toledo and Yue Lin L. Tong

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1133-1135.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537433

Mathematical Reviews number (MathSciNet)
MR0404677

Zentralblatt MATH identifier
0331.14004

Subjects
Primary: 14B15: Local cohomology [See also 13D45, 32C36] 32C10 58G10

Citation

Toledo, Domingo; Tong, Yue Lin L. The holomorphic Lefschetz formula. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1133--1135. https://projecteuclid.org/euclid.bams/1183537433


Export citation

References

  • 1. M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207. MR 19, 172.
  • 2. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451-491. MR 38 #731.
  • 3. M. F. Atiyah and I. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. MR 38 #5245.
  • 4. E. H. Brown, Jr., Twisted tensor products. I, Ann. of Math. (2) 69 (1959), 223-246. MR 21 #4423.
  • 5. A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérentes. Séminaire Bourbaki 9ième: 1956/57, Exposé 149, 2ième éd., Secrétariat mathématique, Paris, 1959. MR 28 #1090.
  • 6. R. Hartshorne, Local cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin and New York, 1967. MR 37 #219.
  • 7. V. K. Patodi, Holomorphic Lefschetz fixed point formula, Bull. Amer. Math. Soc. 79 (1973), 825-828. MR 47 #5906.
  • 8. D. Toledo and Y. L. L. Tong, A parametrix for $øverline\partial$ and Riemann-Roch in Čech theory(to appear).