Bulletin of the American Mathematical Society

Stability of equivariant smooth maps

V. Poénaru

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1125-1126.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537430

Mathematical Reviews number (MathSciNet)
MR0405490

Zentralblatt MATH identifier
0316.58007

Subjects
Primary: 58C25: Differentiable maps

Citation

Poénaru, V. Stability of equivariant smooth maps. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1125--1126. https://projecteuclid.org/euclid.bams/1183537430


Export citation

References

  • 1. J. Dieudonné and J. B. Carrel, Invariant theory, old and new, Advances in Math. 4 (1970), 1-80. MR 41 #186.
  • 2. J. Mather, Stability of C mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89-104. MR 38 #726.
  • 3. J. Mather, Stability of C mappings. II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254-291. MR 41 #4582.
  • 4. V. Poénaru, Déploiement des fonctions G-invariantes(to appear).
  • 5. V. Poénaru, Stabilité structurelle equivariante. I, II (to appear).
  • 6. V. Poénaru, Analyse différentielle, Lecture Notes in Math., vol. 371, Springer-Verlag, Berlin and New York, 1974.
  • 7. G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68.
  • 8. H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 42.