Bulletin of the American Mathematical Society

Operator algebras and algebraic $K$-theory

Lawrence G. Brown

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1119-1121.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537428

Mathematical Reviews number (MathSciNet)
MR0383090

Zentralblatt MATH identifier
0332.46038

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Brown, Lawrence G. Operator algebras and algebraic $K$-theory. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1119--1121. https://projecteuclid.org/euclid.bams/1183537428


Export citation

References

  • 1. L. G. Brown, The determinant invariant for operators with compact self-commutators, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973, pp. 210-228.
  • 2. L. G. Brown, Group cohomology of topological groups (in preparation).
  • 3. L. G. Brown, Characterizing Ext(X), Lecture at Internat. Conf. on K-theory and Operator Algebras (Athens, Georgia, April, 1975), Lecture Notes in Math., Springer-Verlag, New York (to appear).
  • 4. L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc. 79 (1973), 973-978.
  • 5. L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973, pp. 58-128.
  • 6. R. K. Dennis, Differentials in algebraic K-theory(preprint).
  • 7. J. W. Helton and R. E. Howe, Integral operators: commutators, traces, index and homology, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973, pp. 141-209.
  • 8. J. Kaminker and C. Schochet, Steenrod homology and operator algebras, Bull. Amer. Math. Soc. 81 (1975), 431-434.
  • 9. J. W. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, no. 72, Princeton, N. J., 1971.
  • 10. J. W. Milnor, On the Steenrod homology theory, Mimeographed notes, Univ. of Calif, Berkeley, Calif., 1961.
  • 11. N. Steenrod, Regular cycles on compact metric spaces, Ann. of Math. (2) 41 (1940), 833-851. MR 2, 73.