Bulletin of the American Mathematical Society

Approximate functional complexity

R. C. Buck

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1112-1114.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537426

Mathematical Reviews number (MathSciNet)
MR0387516

Zentralblatt MATH identifier
0317.41016

Subjects
Primary: 41A30: Approximation by other special function classes
Secondary: 26A72

Citation

Buck, R. C. Approximate functional complexity. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1112--1114. https://projecteuclid.org/euclid.bams/1183537426


Export citation

References

  • 1. V. I. Arnol'd, Representation of continuous functions of three variables by the superposition of continuous functions of two variables. Mat. Sb. 48 (90) (1959), 3-74;English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 61-147. MR 22 #12191; 27 #3759.
  • 2. V. I. Arnol'd, Some questions on approximation and representation of functions, Proc. Internat. Congress Math., 1958, pp. 339-348; English transl., Amer. Math. Soc. Transl. (2) 53 (1966), 192-201. MR 22 #12192.
  • 3. V. I. Arnol'd, On the representability of a function of two variables in the form $\chi[\phi(x)+\psi(y)]$, Uspehi Mat. Nauk. 12 (1957), no. 2, (74), 119-121. (Russian) MR 19, 841.
  • 4. R. C. Buck, On approximation theory and functional equations, J. Approximation Theory 5 (1972), 228-237.
  • 5. A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Dokl. Akad. Nauk SSSR 114 (1957), 953-956; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 55-59. MR 22 #2669; 27 #3760.
  • 6. G. G. Lorentz, Metric entropy, widths, and superpositions of functions, Amer. Math. Monthly 69 (1962), 469-485. MR 25 #5323.
  • 7. D. A. Sprecher, Survey of solved and unsolved problems on superposition of functions, J. Approximation Theory 6 (1972), 122-134.
  • 8. A. G. Vituškin, Estimation of the complexity of the tabulation problem, Fizmatgiz, Moscow, 1959; English transl., Theory of the transmission and processing of information, Pergamon Press, New York and London, 1961. MR 22 #8265; 24 #A2187.