Bulletin of the American Mathematical Society

Novikov's ${\text{Ext}}^2$ and the nontriviality of the gamma family

Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1073-1075.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537413

Mathematical Reviews number (MathSciNet)
MR0380790

Zentralblatt MATH identifier
0319.55023

Subjects
Primary: 55E45 55H25 55G25
Secondary: 18G15: Ext and Tor, generalizations, Künneth formula [See also 55U25] 55B20 55E25 57D90

Citation

Miller, Haynes R.; Ravenel, Douglas C.; Wilson, W. Stephen. Novikov's ${\text{Ext}}^2$ and the nontriviality of the gamma family. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1073--1075. https://projecteuclid.org/euclid.bams/1183537413


Export citation

References

  • 1. J. F. Adams, Stable homotopy and generalized homology, University of Chicago Press, Chicago, 111., 1974.
  • 2. D. C.Johnson, H. R. Miller, W. S. Wilson and R. S. Zahler, Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many γt in stable homotopy, Proc. Northwestern University Homotopy Theory Conference (August, 1974), Mem. Mex. Math. Soc. (to appear).
  • 3. P. S. Landweber, Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 272-284. MR 48 #1235.
  • 4. H. R. Miller and W. S. Wilson, On Novikov's Ext1 modulo an invariant prime ideal, Proc. Northwestern University Homotopy Theory Conference (August, 1974), Mem. Mex. Math. Soc. (to appear).
  • 5. S. Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87-114.
  • 6. S. Oka and H. Toda, Non-triviality of an element in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 115-125.
  • 7. L. Smith, On realizing complex bordism modules applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793-856. MR 43 #1186a.
  • 8. L. Smith, On realizing complex cobordism modules. IV (to appear).
  • 9. E. Thomas and R. S. Zahler, Nontriviality of the stable homotopy element γ1, J. Pure Appl. Algebra 4 (1974), 189-203.
  • 10. E. Thomas and R. S. Zahler, Generalized higher order cohomology operations and stable homotopy groups of spheres, Advances in Math. (to appear).
  • 11. H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65. MR 42 #6814.