Bulletin of the American Mathematical Society

The wall obstruction in shape and pro-homotopy, with applications

David A. Edwards and Ross Geoghegan

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 5 (1975), 919-920.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537249

Mathematical Reviews number (MathSciNet)
MR0375331

Zentralblatt MATH identifier
0316.57002

Subjects
Primary: 55B99 55D10
Secondary: 57A99

Citation

Edwards, David A.; Geoghegan, Ross. The wall obstruction in shape and pro-homotopy, with applications. Bull. Amer. Math. Soc. 81 (1975), no. 5, 919--920. https://projecteuclid.org/euclid.bams/1183537249


Export citation

References

  • 1. M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math., Vol. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
  • 2. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., Vol. 304, Springer-Verlag, Berlin and New York, 1972.
  • 3. D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (to appear).
  • 4. D. A. Edwards and R. Geoghegan, Splitting homotopy idempotents (mimeographed).
  • 5. P. Freyd, Splitting homotopy idempotents, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer-Verlag, New York, 1966. MR 34 #5894.
  • 6. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Doctoral dissertation, Princeton University, 1965.
  • 7. L. C. Siebenmann, Regular (or canonical) open neighborhoods, General Topology and Appl. 3(1973), 51-56.
  • 8. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69. MR 30 #1515.
  • 9. J. E. West, Compact ANR's have finite type, Bull. Amer. Math. Soc. 81 (1975), 163-165.