Bulletin of the American Mathematical Society

Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints

F. J. Almgren, Jr.

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 1 (1975), 151-154.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183536257

Mathematical Reviews number (MathSciNet)
MR0361996

Zentralblatt MATH identifier
0297.49041

Subjects
Primary: 49F22 49F20
Secondary: 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]

Citation

Almgren, F. J. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Bull. Amer. Math. Soc. 81 (1975), no. 1, 151--154. https://projecteuclid.org/euclid.bams/1183536257


Export citation

References

  • [A1] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, 294 pp. (preprint).
  • [A2] F. J. Almgren, Jr., The structure of limit varifolds associated with minimizing sequences of mappings, Symposia Matematica (to appear).
  • [A3] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321-391. MR 37 #837.
  • [F] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976.
  • [T] J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I. (to appear).
  • [TD] D'A. Thompson, On growth and form, abridged edition, Cambridge Univ. Press, New York, 1961. MR 23 #B1601.