Bulletin of the American Mathematical Society

Three structure theorems in several complex variables

Reese Harvey

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 4 (1974), 633-641.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535687

Mathematical Reviews number (MathSciNet)
MR0355097

Zentralblatt MATH identifier
0287.32007

Subjects
Primary: 32–02
Secondary: 32C25: Analytic subsets and submanifolds 49F20 37F05: Relations and correspondences

Citation

Harvey, Reese. Three structure theorems in several complex variables. Bull. Amer. Math. Soc. 80 (1974), no. 4, 633--641. https://projecteuclid.org/euclid.bams/1183535687


Export citation

References

  • 1. E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267-287. MR 46 #5328.
  • 2. E. Bombieri, Addendum to my paper ”Algebraic values of meromorphic maps", Invent. Math. 11 (1970), 163-166.
  • 3. R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204. MR 40 403.
  • 4. H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976.
  • 5. P. A. Griffiths, Two theorems on extensions of holomorphic mappings, Invent. Math. 14 (1971), 27-62. MR 45 #2202.
  • 6. R. Harvey, Removable singularities and structure theorems for positive currents, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R.I., 1973, pp. 129-133.
  • 7. R. Harvey, A result on extending positive currents, Amer. J. Math, (to appear).
  • 8. R. Harvey and J. P. King, On the structure of positive currents, Invent. Math. 15 (1972), 47-52. MR 45 #5409.
  • 9. R. Harvey and B. Lawson, Boundaries of complex analytic varieties, Bull. Amer. Math. Soc. 80 (1974), 180-183.
  • 10. R. Harvey and B. Lawson, Boundaries of complex analytic varieties (in preparation).
  • 11. R. Harvey and B. Shiffman, A Characterization of holomorphic chains, Ann. of Math, (to appear).
  • 12. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966, MR 34 #2933.
  • 13. L. R. Hunt and R. O. Wells, Jr., Holomorphic extension for non-generic C.R. submanifolds, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc.Providence, R.I. (to appear).
  • 14. J. King, The currents defined by analytic varieties, Acta Math. 127 (1971), 185-220.
  • 15. H. B. Lawson and J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. of Math. 98 (1973), 427-450.
  • 16. P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262. MR 20 #2465.
  • 17. P. Lelong, Propriétés métriques des ensembles analytiques complexes, Séminaire Lelong, 6e année: 1965/66, no. 2, Secrétariat mathématique, Paris, 1966. MR 36 #4941.
  • 18. P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, New York (distributed by Dunod, Paris), 1968. MR 39 #4436.
  • 19. R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., no. 25, Springer-Verlag, New York and Berlin, 1966. MR 36 #428.
  • 20. B. Shiffman, Extension of positive line bundles and meromorphic maps, Invent. Math. 15 (1972), 332-347.
  • 21. Y.-T. Siu,Analyticity of sets associated to Lelong numbers and the extension of meromorphic maps, Bull. Amer. Math. Soc. 79 (1973), 1200-1205.
  • 22. Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents (to appear).
  • 23. H. Skoda, Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. France 100 (1972), 353-408.
  • 24. G. Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Math., no. 19, Springer-Verlag, Berlin and New York, 1966. MR 34 #6156.
  • 25. V. S. Vladimirov, Methods of the theory of functions of several complex variables, "Nauka", Moscow, 1964; English transl., M.I.T. Press, Cambridge, Mass., 1966. MR 30 #2163; 34 #1551.
  • 26. J. Wermer, The hull of a curve in Cn, Ann. of Math. (2) 68 (1958), 550-561. MR 20 #6536.
  • 27. H. B. Lawson, Minimal varieties in real and complex geometry, Montreal Lecture Notes.