Bulletin of the American Mathematical Society

Harmonic quasiconformal mappings of Riemannian manifolds

Samuel I. Goldberg and Toru Ishihara

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 562-566.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535543

Mathematical Reviews number (MathSciNet)
MR0341335

Zentralblatt MATH identifier
0283.30025

Subjects
Primary: 53A99: None of the above, but in this section 53C99: None of the above, but in this section 30A60

Citation

Goldberg, Samuel I.; Ishihara, Toru. Harmonic quasiconformal mappings of Riemannian manifolds. Bull. Amer. Math. Soc. 80 (1974), no. 3, 562--566. https://projecteuclid.org/euclid.bams/1183535543


Export citation

References

  • 1. S. S. Chern, On holomorphic mappings of hermitian manifolds of the same dimension, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), Amer. Math. Soc. Providence, R.I., 1968, pp. 157-170. MR 38 #2714.
  • 2. S. S. Chern and S. I. Goldberg, On the volume-decreasing property of a class of real harmonic mappings, Amer. J. Math, (to appear).
  • 3. J. Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 29 #1603.
  • 4. T. Ishihara, A remark on harmonic quasiconformal mappings, J. Math. Tokushima Univ. 5 (1971), 17-23. MR 46 #829.
  • 5. P. J. Kiernan, Quasiconformal mappings and Schwarz's lemma, Trans. Amer. Math. Soc. 148 (1970), 185-197. MR 41 #467.
  • 6. S. Kobayashi, Volume elements, homomorphic mappings and Schwarz's lemma, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), Amer. Math. Soc., Providence, R.I., 1968, pp. 253-260. MR 38 #6100.
  • 7. Y. C. Lu, Holomorphic mappings of complex manifolds, J. Differential Geometry 2 (1968), 299-312. MR 40 #3482.
  • 8. H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233. MR 37 #468.