Bulletin of the American Mathematical Society

A physically consistent, discrete $n$-body model

Donald Greenspan

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 553-555.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535541

Mathematical Reviews number (MathSciNet)
MR0337085

Zentralblatt MATH identifier
0284.70007

Subjects
Primary: 65L05: Initial value problems 70F10: $n$-body problems

Citation

Greenspan, Donald. A physically consistent, discrete $n$-body model. Bull. Amer. Math. Soc. 80 (1974), no. 3, 553--555. https://projecteuclid.org/euclid.bams/1183535541


Export citation

References

  • 1. G. Birkhoff and R. E. Lynch, Lagrangian hydrodynamic computations and molecular models of matter, LA-2618, Los Alamos Sci. Lab., Los Alamos, N.M., 1961.
  • 2. B. J. Daly, F. H. Harlow and J. E. Welch, Numerical fluid dynamics using the particle-and-force method, LA-3144, Part I, Los Alamos Sci. Lab., Los Alamos, N.M., 1965.
  • 3. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman lectures on physics, Vol. I: Mainly mechanics, radiation and heat, Addison-Wesley, Reading, Mass., 1963. MR 35 #3942.
  • 4. J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Dynamics of radiation damage, Phys. Rev. 120 (1960), 1229-1253.
  • 5. D. Greenspan, An algebraic, energy conserving formulation of classical molecular and Newtonian n-body interaction, Bull. Amer. Math. Soc. 79 (1973), 423-427.
  • 6. D. Greenspan, Symmetry in discrete mechanics, Found. Phys. 3 (1973), 247-253.
  • 7. A. B. Langdon, 'Energy-conserving'plasma simulation algorithms, J. Computational Phys. 12 (1973), 247-268.
  • 8. A. K. MacPherson, The formation of shock waves in a dense gas using a molecular dynamics type technique, J. Fluid Mech. 45 (1971), 601-621.
  • 9. J. von Neumann, Proposal and analysis of a new numerical method for the treatment of hydrodynamical shock problems, Collected works. Vol. VI: Theory of games, astrophysics, hydrodynamics and meteorology, A Pergamon Press Book, Macmillan, New York, 1963. MR 28 #1105.
  • 10. J. R. Pasta and S. Ulam, Heuristic numerical work in some problems of hydrodynamics, Math. Tables Aids Comput. 13 (1959), 1-12. MR 21 #2348.
  • 11. Yu. P. Popov and A. A. Samarskiĭ, Completely conservative difference schemes for magnetohydrodynamic equations, U.S.S.R. Comput. Math, and Math. Phys. 10 (1970) 233-243.
  • 12. L. Verlet, Computer experiments on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968), 201-214.