Bulletin of the American Mathematical Society

A boundary maximum principle for degenerate elliptic-parabolic inequalities, for characteristic boundary points

Sally Ellene Myers

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 527-530.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535534

Mathematical Reviews number (MathSciNet)
MR0336070

Zentralblatt MATH identifier
0294.35035

Subjects
Primary: 35J25: Boundary value problems for second-order elliptic equations 35J70: Degenerate elliptic equations 35K20: Initial-boundary value problems for second-order parabolic equations

Citation

Myers, Sally Ellene. A boundary maximum principle for degenerate elliptic-parabolic inequalities, for characteristic boundary points. Bull. Amer. Math. Soc. 80 (1974), no. 3, 527--530. https://projecteuclid.org/euclid.bams/1183535534


Export citation

References

  • 1. J.-M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), fasc. 1, 277-304. MR 41 #7486.
  • 2. A. Friedman, Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math. 8 (1958), 201-211. MR 21 #1444.
  • 3. C. D. Hill, A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970/71), 213-229. MR 44 #4382.
  • 4. R. M. Redheffer, The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971), 227-248.