Bulletin of the American Mathematical Society

A subsequence principle in probability theory (applied to the law of the iterated logarithm)

S. D. Chatterji

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 495-497.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535526

Mathematical Reviews number (MathSciNet)
MR0345177

Zentralblatt MATH identifier
0287.60028

Subjects
Primary: 60F15: Strong theorems
Secondary: 28A65

Citation

Chatterji, S. D. A subsequence principle in probability theory (applied to the law of the iterated logarithm). Bull. Amer. Math. Soc. 80 (1974), no. 3, 495--497. https://projecteuclid.org/euclid.bams/1183535526


Export citation

References

  • 1. S. D. Chatterji, A general strong law, Invent. Math. 9 (1969/70), 235-245. MR 42 #1183.
  • 2. S. D. Chatterji, Un principe de sous-suites dans la théorie des probabilités, Séminaire de probabilités VI, Strasbourg, Lecture Notes in Math., vol. 258, Springer Verlag, Berlin and New York, 1972, pp. 72-89.
  • 3. S. D. Chatterji, Les martingales et leurs applications analytiques. École d'été de probabilités: processus stochastiques (Bretagnolle, Chatterji, Meyer), Lecture Notes in Math., vol. 307, Springer-Verlag, Berlin and New York, 1973.
  • 4. S. D. Chatterji, A principle of subsequences in probability theory. (The central limit theorem), Advances in Math. (to appear).
  • 5. S. D. Chatterji, A principle of subsequences in probability theory. II. (The law of the iterated logarithm) (to appear).
  • 6. P. Hartman and A. Winnter, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169-176. MR 2, 228.
  • 7. A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), 126-135.
  • 8. J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229. MR 35 #1071.
  • 9. J. Marcinkiewicz and A. Zygmund, Remarque sur la loi du logarithme itéré, Fund. Math. 29 (1937), 215-222.
  • 10. W. F. Stout, A martingale analogue of Kolmogorov's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279-290. MR 45 #2778.
  • 11. V. Strassen, A converse to the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965/66), 265-268. MR 34 #850.
  • 12. Mary Weiss, On the law of the iterated logarithm for uniformly bounded ortho-normal systems, Trans. Amer. Math. Soc. 92 (1959), 531-553. MR 21 #5844.