Bulletin of the American Mathematical Society

Direct integral theory for weights, and the Plancherel formula

Colin E. Sutherland

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 456-461.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535518

Mathematical Reviews number (MathSciNet)
MR0338789

Zentralblatt MATH identifier
0286.46055

Subjects
Primary: 46K15: Hilbert algebras
Secondary: 46L10: General theory of von Neumann algebras 46L05: General theory of $C^*$-algebras 43A10: Measure algebras on groups, semigroups, etc.

Citation

Sutherland, Colin E. Direct integral theory for weights, and the Plancherel formula. Bull. Amer. Math. Soc. 80 (1974), no. 3, 456--461. https://projecteuclid.org/euclid.bams/1183535518


Export citation

References

  • 1. J. Dixmier, Algèbres quasi-unitaire, Comment Math. Helv. 26 (1952), 275-322. MR 14, 660.
  • 2. J. Dixmier, Algèbres des operateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
  • 3. G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789.
  • 4. M. Takesaki, Theory of operator algebras, U.C.L.A. Lecture Notes, 1969.
  • 5. G. K. Pederson and M. Takesaki, The Radon Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53-87.
  • 6. N. Tatsuuma, Plancherel formula for non-unimodular locally compact groups, J. Math. Kyoto Univ. 12 (1972).