Bulletin of the American Mathematical Society

A characterization of growth in locally compact groups

J. W. Jenkins

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 79, Number 1 (1973), 103-106.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183534301

Mathematical Reviews number (MathSciNet)
MR0316625

Zentralblatt MATH identifier
0262.22004

Subjects
Primary: 22.20 22.50 28.75

Citation

Jenkins, J. W. A characterization of growth in locally compact groups. Bull. Amer. Math. Soc. 79 (1973), no. 1, 103--106. https://projecteuclid.org/euclid.bams/1183534301


Export citation

References

  • 1. L. Auslander and J. Brezin, Uniform distributions in solvmanifolds, Advances in Math. 7 (1971), 111-144.
  • 2. T. Bewley, Extension of the Birkhoff and von Neumann ergodic theorems to general semi-groups, Ann. Inst. Henri Poincaré 7 (1971), 283-291.
  • 3. A. P. Calderón, A general ergodic theorem, Ann. of Math. (2) 58 (1953), 182-191. MR 14, 1071.
  • 4. W. R. Emerson and F. P. Greenleaf, Asymptotic behavior of products Cp = C + · · · + C in locally compact abelian groups, Trans. Amer. Math. Soc. 145 (1969), 171-204. MR 40 #2780.
  • 5. A. Hulanicki, On positive functionals on a group algebra multiplicative on a subalgebra, Studia. Math. 37 (1971), 163-171.
  • 6. J. Jenkins, On the spectral radius of elements in a group algebra, Illinois J. Math. 15 (1971), 551-554.
  • 7. J. Jenkins, Nonsymmetric group algebras, Studia Math. (to appear).
  • 8. J. Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447-449. MR 39 #6212.
  • 9. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.
  • 10. J. Tits, Free subgroups in linear groups (to appear).
  • 11. J. A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421-446. MR 40 #1939.